Ocean Battlespace Sensing Department Enabling Revolutionary Naval Expeditionary Warfare Capabilities

16th Annual Expeditionary Warfare Conference Panama City, Florida

26 October 2011

Tom Swean Jr. PhD

Team Leader, MIW Program (ONR 321)

Voice: (703) 696-4025 Fax: (703) 696-3390 sweant@onr.navy.mil

Office of Naval Research Ocean Battlespace Sensing

Ocean Battlespace Sensing S&T Department

Ocean Sensing & Systems Applications
Division
CDR Dan Eleuterio
Dr Joan Cleveland

Maritime Sensing - Wardlaw
Ocean Engineering & Marine Systems
Research Facilities - Schnoor
Undersea Signal Processing - Tague

Ocean Atmosphere & Space Research
Division
Dr Linwood Vincent
CDR Steve Martin

Arctic Science & Integrated Prediction - Harper Littoral Geosciences & Optics - Drake Marine Mammals & Biology - Weise Marine Meteorology & Space Research - Ferek National Oceanographic Partnership Program (NOPP) - Fiadeiro Ocean Acoustics - Headrick Physical Oceanography - Paluszkiewicz Naval S&T Focus Areas

Assure Access to the Maritime Battlespace

Autonomy and Unmanned Systems

Expeditionary and Irregular Warfare

Information Dominance

Platform Design and Survivability

Power and Energy

Power Projection and Integrated Defense

Total Ownership Cost

Warfighter Performance

Areas of Responsibility

Naval S&T

Strategic Plan

Strategic Precepts

- Future Fleet ship and aircraft assets will continue to decline in number
- Personnel costs will drive efforts to reduce the number of operators for any given mission
- Acquisition dollars will be scarce close coordination with the Fleet and acquisition authorities is essential to transition
- Networked, platform agnostic, autonomous distributed sensors and effectors will play an increasingly important role in naval operations

Overarching Theme Autonomous Sensors

TacSat-4 Mission Overview

TacSat-4: Providing Communications and Enabling ORS

Augment National SATCOM with:

- 10 Legacy UHF Channels
- COMMS-on-the-Move without User Antenna Pointing
- Networked COMMS on SIPRNET
- A Single MUOS-like Wideband Channel for Early Testing
- UHF Blue Force Tracking (BFT), now "Friendly Force Tracking" (FFT), Collection in Underserved Areas
- Data Exfiltration from Unattended Ground and Maritime Sensors

Enable ORS Long Dwell Missions and Augment National Coverage with a Unique HEO Orbit

Support EMI Location Programs

Riverine Reconnaissance

Assure access: riverine environments change rapidly – many locations not amenable to remote sensing

Uncertainty reduces optempo and greatly increases risk

Must counter water and land threats simultaneously

River depths from remote sensing

Riverine reconn exploits satellite, UxV and in situ observations of river characteristics to provide predictive models for tactical decisions

Capabilities:

- Wind speed/direction
- Visibility
- Air temperature
- Relative humidity and dew point
- Barometric pressure (QNH/PA/DA)
- Global communications using SATCOMs
- Hourly weathergram transmitted via email
- Web interface to data and mapping of near real-time conditions
- Solar powered for unattended operation
- Based upon technology used in ocean buoys
- Low Cost

Expeditionary Meteorological Sensor

- A cooperative effort between the U.S. Office of Naval Research and U.S. Marine Corps to develop and test a rapidly-deployable, proof-of-concept meteorological sensor system to autonomously sense and report weather and visibility conditions at remote locations
- Provides situational awareness of rapid weather changes which impact local operations

Data collection for validating and improving forecast models

Basic and Applied Research for Building the Navy's Environmental Prediction System (The world's largest operational, integrated environmental prediction system)

WESTPAC Basic Environmental

Observations, Discoveries, Inventions

Develop/Improve 25+ **Operational Prediction System** Components

Research

ONR Field Studies* **Impacts on Western** Pacific Typhoon

Predictability Quantifying, Predicting,

> **Exploiting** Uncertainty

Internal Waves in Straits Experiment

> Origins of the Kuroshiro and Mindanao Currents

Vietnamese Shelf and South China Sea Variability

Remote Sensing of Deltas

Typhoon Impacts on the Western **Pacific Ocean**

* Ongoing FY11

120°E 140°E 10.0 15.0 20.0 25.0 30.0

Surface Temperature (OC

NCOM EAS 1/160 model

Navy R&D focus on OCONUS areas of special operational interest and for specific **Warfare missions**

ONR Model Development

HYCOM 1/25th Degree Tide Resolving Model

New technology

Sand Storm Prediction

CNMOC Transitioned Predictions

FNMOC &NAVOCEANO distribute 1000s of product sets per day to Support Navy and other DoD users in Peace and war.

Ocean and Atmosphere Models and Prediction Systems

ONR S&T: Develop/Improve 25+ Operational Prediction System Components

Research: Process studies,
Theory, Model Development:

- Ocean
 - o Currents, Circulation
 - o Waves, Surf
 - Mixing
 - o Ice
 - Sediment Transport
 - Acoustics, Optics
- Atmosphere
 - o Global, Mesoscale
 - o Tropical Cyclones
 - o Dust, Visibility
 - o EM/EO Propagation
- Observation Systems
- Advanced Data Assimilation

Operations:

- Global ocean models
 - o SWAFS
 - o NLOM
 - o GNCOM
 - o GHYCOM
- Regional ocean models
 - o RNCOM
 - o COAMPS
- Coastal ocean models
- WW3 (Waves)
- Sea Ice
- Atmosphere models
 - o COAMPS
 - NAVGEM

High-resolution Regional and Coastal Prediction Systems

Relocatable anywhere within the global system

LCS Mine Countermeasures Concept

Future Naval Capabilities Advanced LCS MCM Mission Package

1

Compact Modular Sensor Suite (CMSS) for Detection & Classification of Surface/Near-Surface Drifting Mines

New Start - FY12

Surface/Near-Surface Drifting Mine Neutralization Capability for AMNS

New Start – FY13

Ultra Light Structures

Automated Mission Module

MCM Sensor Data Fusion

Unmanned Systems Common Control (SUMMIT)

New Start - FY12/13

Mine Drift Tactical Decision Aid Automated Mission Planning

Single Sortie Detect-to-Engage (DTE) Payload for USV

UUV Buried Mine Sensor (LFBB) Long Range LFBB Sonar

FY12 FNC: Compact Modular Sensor/ Processing Suite (CMSS)

CMSS

- Small Multi-mode Sensor Package
- Real-time Detection/Classification
- Surface and Near-Surface Mines
- Drifting/Oscillating (Moving) Mines

Real-time processing eliminates requirement for off-board classification

Opportunities for Industry (FY12):

- Sensor System with Multiple Sensing Modalities (Active/Passive Electro-Optic, Synthetic Aperture RADAR)
- Real-Time Onboard Target Classification
- Advanced Target Recognition Algorithms
- Real-time In-Situ Characterization of the Environment (waves, currents)

FY12 FNC: Mine Drift Prediction Tactical Decision Aid (TDA)

The Mine Drift Prediction TDA Drift trajectories using real-time data Plan optimal deployment of MCM assets • Generate maneuver plan for surface combatants Infer locations of mine deployment **Opportunities for Industry (FY12)** Drift Models to Predict Drift of Surface and **Sub-Surface Objects** Data-assimilative oceanographic models for surface and subsurface conditions Adaptive mission planning using real-time **Predicted Drift Trajectories**

oceanographic and target data

FY13 FNC: Single Sortie MCM Detect-to-Engage Payload

FY13 FNC: MCM Payload Automation

Multi Mission Package MCM Automation

"The MCM MP must support squadron-level operations"

Large Diameter Unmanned Undersea Vehicle

Naval Strategic Priority

Product Description:

- Reliable Long Endurance UUV capable of 60+ days of operation in the Littorals.
- Program will develop the needed Autonomy, Energy, and Core UUV systems to operate in complex ocean environment near harbors, shore, and high surface traffic locations

Key Program Goals

- Double Current UUV Energy Density
- Autonomous in the Littorals:
- Open Architecture
- Open Ocean/Over the Horizon Operations

Opportunities for Industry:

- Power and Energy technologies
- Autonomy in the Littorals
- Endurance and Reliability technologies

Autonomous Operation

Ocean Battlespace Sensing Department Enabling Revolutionary Naval Expeditionary Warfare Capabilities

16th Annual Expeditionary Warfare Conference Panama City, Florida

26 October 2011

Tom Swean Jr. PhD

Team Leader, MIW Program (ONR 321)

Voice: (703) 696-4025 Fax: (703) 696-3390 sweant@onr.navy.mil