

U.S. Army Research, Development and Engineering Command

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Introduction of wireless and MEMs based devices into Fire Control Systems

Presented by

Ralph Tillinghast & Michael Wright

April 12, 2011

Overview and Outline

Outline

- Current Technology State (Presented by: Ralph Tillinghast)
 - Wireless & MEMs (Micro-electro-mechanical Systems)
 - Pointing and Navigation
 - Fire Control
- Current Applications(Presented by: Michael Wright)
 - 60 & 81mm Mortar Systems

Current State (Wireless)

- Current Wireless Protocols
 - Bluetooth
 - 802.11 (wireless A,B,G,N)
 - 802.15.4 (Zigbee)
- Army's Current Wireless System
 - Secnet 11 & 54, encrypted 802.11
 - Tactical modem through Army Radio (Taclink-ASIP)
- Other commercial entities currently developing new secure and affordable protocols.

Current State (Pointing and Orientation)

DISTRIBUTION STATEMENT A

Key Performance Parameters

Key Parameter	Near-Term External / Tripod Mount Threshold (T)	Long-Term Internal / Fully Integrated Objective (O)
Azimuth Accuracy	±4 mils Probable Error (PE)	±1 mil PE
Vertical Angle Accuracy	±4 mils PE	±1 mil PE
Orientation Range	Pitch: ±500 mils (~30°) Bank: ±270 mils (~15°)	Pitch: ±1511 mils (~85°) Bank: ±500 mils (~30°)
Slew Rate	30° per second	1000° per second
Set up Time	< 180 seconds	< 1 second
Operational Temperature	-40°C - +70°C	-40°C - +70°C
Shock	40g / 11 ms	2000 g / 1.5 ms (weapon fire)
Vibration	MILSTD 810/ min integrity	MILSTD 810/ min integrity
Volume	≤50 cu in	≤0.25 cu in
Weight	≤4.0 lbs (≤2.0 lbs preferred)	≤0.2 lbs
Power	≤10.0 W (≤2.0 W preferred)	≤250 mW
Average Unit Production Cost (FY07 dollars)	\$20K	TBD

Slide from Presentation by Kate Jones, NSWC Dahlgren, 2009, Gun and Missile Conference, Azimuth & Vertical Angle Measurement (AVAM) Joint Working Group (JWG)

Current State (Pointing and Orientation)

- GPS
- Laser Ring Gyro
- Fiber Optic Gyro
- Hemispherical Resonator Gyro
- Fluid Gyro
- MEMs Gyro
- Celestial System
- Optical Systems

Current State (MEMs)

- Geophones
- Tuning Fork Gyro
- Vibrating-Wheel Gyro
- Wine Glass Resonator Gyro
- Foucault Pendulum Gyro

ADI's Quad differential gyro (www.analog.com)

Draper Laboratory, 20 micron thick MEMs
Accelerometer
(www.sensorsmag.com)

Resonating ring gyro, Silicon Sensing System (www.sensorsmag.com)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Current State (Fire Control)

- M150/M151 120mm Mortar Fire Control
 - Laser Ring Gyro Based system (+/- 1 mil)
- Direct Lay Pointing (DLP)
 - 60mm Mortar (Charges 0 and 1)
 - Round Selection, Elevation and Time of Flight
- M2 Compass
 - Accuracy, +/- 10 mils
 - Handheld
- M2A2 Aiming Circle
 - Accuracy, +/- 2.0 mil
 - Large, Magnetic, Labor intensive

Overview and Outline

Outline

- Current and Future Technology State (Presented by: Ralph Tillinghast)
 - Wireless & MEMs
 - Pointing and Navigation
 - Fire Control
- Current Applications(Presented by: Michael Wright)
 - 60 & 81mm Mortar Systems

Current Applications (60 & 81mm Mortar Systems)

- M95/M151 far too heavy and power hungry for dismounted mortar operations
- Direct Lay Pointing (DLP) is only elevation on 60mm
- Trade off between accuracy and number of rounds
- The need to be smaller, lighter, faster rules out currently fielded technology
 - Laser ring north finding
 - Directly cabled solutions
 - Needs to seamlessly fit within current mortar usage and tactics

Future State of 60 & 81mm Wireless Universal Light Fire-Control (WULF)

WULF provides weapon pointing data from the LHMBC wirelessly to gunner. The Gunners display unit indicates the required gun shift information.

- Embedded Computer
- 3-4 mil Accuracy
- Target Battery Life: 24+ hours
- Report Delta Deflection and Elevation
- Adaptable to different wireless standards
- 60, 81 and 120mm compatible

NDIA – May 2010

Current Applications, Pointing (60 & 81mm Mortar Systems)

- Magnetic compass north finding easily effected by inference and incorrect declination.
- MEM's gyro north finding not accurate enough for 81mm mortars.
- Optical tracking can not handle large shifts in azimuth
- Laser and Fiber Optic Gyros too heavy, expensive, and inefficient.
- Combination of technologies required to accurately detect and hold north reference through magnetic interference and firing events.

Current Applications, Communication (60 & 81mm)

- Army radio (ASIP) not practical to have at every gun
- Guns operated relatively close to digital fire direction center (M32).
- Minimal amount of data needs to be transmitted
- 802.11 ADHOC supports auto forwarding between nodes on same net
 - Bluetooth deemed impractical for this application.
- Security handled through software encryption, message limitation (does not transmit position information), and range limitation.

Questions

Contact Info:

Ralph Tillinghast

Collaboration Innovation Lab

Lab Director

Fire Control Systems & Technology

US Army ARDEC, RDAR-WSF-M

973.724.2095

ralph.tillinghast@us.army.mil

Michael Wright

Wireless Universal Lightweight Fire-Control

ARDEC Project Officer

Fire Control Systems & Technology

US Army ARDEC, RDAR-WSF-M

973.724.8614

michael.wright26@us.army.mil

Please visit the ARDEC Booth in the Exhibit Hall

