

SPECIAL MISSIONS

Small Arms Air Platform Integration

A Method for Determining the Effects of Overpressure from Small/Medium Weapons Fire

Abstract 11838

30 August 2011

Steven L. Backer

Crane Division, Naval Surface Warfare Center (NSWC Crane)

Com (812) 854-5467 DSN 482-5467 Steven.backer@navy.mil

Small Arms Air Platform Integration

Small/Medium Caliber Weapons on Air Platforms SH-60S Armed Helicopter

- **GAU-21 (.50-cal)**
- M240 7.62 mm
- 20 mm Weapon Systems
- **RAMICS**

Aircraft Skin Limits

Shockwaves

- Shockwave a region across which there is a rapid pressure, temperature and density rise, usually caused by a body moving supersonically in a gas or by a detonation
- Characteristics:
 - Near-discontinuous pressure rise
 - •Exponential decay. Positive Phase duration. Relatively short duration.
 - Negative phase.
 - Dependent on angle of incidence.

Shock Waves from Gunfire

- Non-ideal source. Source is not a detonation.
- Similar to "Shocking Up"

Shock Waves from Gunfire

Shocking Up

Shock Waves from Gunfire

Measurement may see both projectile shockwave (N-wave) and the Muzzle Blast

Shock Measurements

PCB Model 137A23 Blast Probe – (Incident Pressure)

Endevco Model 8515C-15 Pressure Sensor (Reflected Pressure)

Incident Pressure vs. Reflected Pressure (Ideal)

Figure 2-6 Peak incident pressure versus the ratio of normal reflected pressure, incident pressure for a free air burst

Angle of Incidence

GAU-21 Data

Table 1. Raw Data

Test	Peak Incident (Side-On) Overpressure (psig)	Positive Phase Duration (ms)	Incident Impulse (psi-ms)
61	8.225	0.394	1.375
62	7.585	0.353	1.340
63	7.876	0.416	1.357

Table 2. Some Calculated Data

Test	Reflected Overpressure	Incident Impulse (psi-ms)	Calculated Equivalent Weight of TNT (lbs)
61	20.14	1.375	0.004139
62	18.20	1.340	0.003619
63	18.93	1.357	0.003813

- Biggs, Introduction to Structural Dynamics, MIT, 1964
 - Assumed undamped linear spring-mass system

$$DLF = \frac{y}{y_{st}}$$

- Generates a General Response Equation

$$y = y_0 \cos \omega t + \frac{\dot{y}_0}{\omega} \sin \omega t + y_{st} \omega \int_0^t f(\tau) \sin \omega (t - \tau) d\tau$$

- For Triangular Force Input,

$$f(\tau) = 1 - \frac{\tau}{t_d}, t \le t_d$$
$$f(\tau) = 0, t \ge t_d$$

- Substituting, Integrating and Simplifying,

$$DLF = 1 - \cos \omega t + \frac{\sin \omega t}{\omega t_d} - \frac{t}{t_d}, t \le t_d$$

$$DLF = \frac{1}{\omega t_{d}} \left[\sin \omega t - \sin \omega (t - t_{d}) \right] \cos \omega t, t \ge t_{d}$$

Dynamic Load Factor (DLF)

Right Side (td/T)>5

Left Side td/T<0.1

Using DLF

Required Values

- From Pressure Measurements
 - T_d = Positive Phase Duration
 - P_r = Peak Dynamic Pressure applied to surface
- From Structure
 - T_n = Natural Period
 - Reference (d) gives a formula to determine the natural frequency of a flat plate with all of the edges fixed or simply supported (Table 36; cases 15&16):

$$f = \frac{K_{1}}{2\pi} \sqrt{\frac{Dg}{wa^{4}}}$$

where, K₁=23.6 for a rectangular plate with fixed edges and K1 = 11.5 for rectangular plate with simply supported edges

E = Modulus of Elasticity for material

v = Poisson's Ratio for the material

g = gravitational constant

w = unit load per unit area including weight of plate

a = length of short edge of plate

GAU21/H-60S on full rear train

- Impinges on an 18" X 7.25" panel
 - $-T_n = 3.88$ ms for fixed edges
 - $-T_n = 7.97$ ms for dimply supported edge
- Worst pressure case from GAU-21 testing
 - $P_r = 20.14 psi$
 - $-T_{d} = 0.394 \text{ ms}$
- Td/Tn = 0.102 for Fixed $DLF_{max} = 0.33$
- Td/Tn = 0.049 for Simple $DLF_{max} = 0.17$

Equivalent Static Pressure

- $P_{eq} = P_r * DLF_{max}$
- Fixed Edges

$$-P_{eq} = 20.14 psi * 0.33 = 6.65 psi$$

- Simply Supported Edged
 - $-P_{eq} = 20.14 \text{ psi } *0.17 = 3.42 \text{ psi}$

Alternatives and Caveats

- **Alternative Dynamic FEA**
- Only the simplest of structures can be hand cranked. FEA may be inevitable.
- Doesn't take into account flexing of the supporting structure.
- Pressure profiles for weapons are hard to come by and do not match pressure versus distance equations for explosives

Conclusions

That's why helicopters don't fall out of the sky when they fire their weapons.

Small Arms Air Platform Integration

Thank you for your time and attention!

For more information on NSWC Crane, please visit www.crane.navy.mil

Images were downloaded via publically accessible websites