

Weapon Systems & Technology Directorate US ARMY ARDEC and ARDEC- BENET Labs

New Physical Vapor Deposition Processes for Durable Pollution-Free Ordnance

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Dr. Sabrina Lee and Daniel Schmidt

2011 NDIA Gun and Missile Conference Miami, Florida, Aug 29- Sept 1, 2011

Production High Contraction Chrome (HC Cr) Process to Coat Ordnance

From- M. Audino. DOD Metal Plating Workshop, May 22, 2006.

Physical Vapor Deposition Technology Alternative to HC Cr Process

☐ Arc Evaporation (filtered, steered, switched) Process. Direct Current Magnetron Sputtering (DCMS) Process. Plasma Enhanced Magnetron Sputtering (PEMS). High Power Impulse Magnetron Sputtering (HIPIMS). PEMS/HIPIMS Deposited CrN Coatings and Applications. PEMS/HIPIMS Deposited Ta Coatings and Applications. Conclusions.

Plasma Enhanced Magnetron Sputtering (PEMS) Using Higher Plasma Intensity

Multiple Target PVD- DCMS and PEMS systems at SWRI

DCMS (0.2mA/cm²)

PEMS (4.9 mA/cm²)

Aluminum

DCMS

PEMS

Chromium

Multiple Target System

Farget voltage

DCMS Versus HIPIMS-HPPMS-MPP High Power Impulse Magnetron Sputtering

DCMS Continuous DC

Continuous DC

Time

DCMS Pulsed DC

Frequency: in kHz Duty cycle: 50~90%

HIPIMS-HPPMS-MPP*

Frequency: in Hz Duty cycle: 1-10%

- *Introduced by Kouznetsov et al; HPPMS-MPP are slight variances of HIPIMS.
- Large number of target material ions and enhanced plasma density.
- ► High power pulses of short duration (100-150 μ s); low duty cycle (1-10%).
- Peak value (1-3 kW/cm²) typically 100 times greater than conventional DC magnetron sputtering (1-3 W/cm²).

^{*} From- V. Kouznetsov, K. Macák, J. M. Schneider, U. Helmersson, and I. Petrov, "A Novel Pulsed Magnetron Sputter Technique Utilizing Very High Target Power Densities," Surf. Coat. Technol. 122 (1999) 290.

New High Power Impulse Magnetron (HIPIMS) Process Using Metal Plasma

- > High intensity target Metal Plasma Instead of Argon Plasma
- > Deposition of dense coatings at low temperature on complex shape.

Plasma Mass-Ion Distribution using Tantalum and Chrome Targets measured using an electrostatic quadrupole plasma (EQP) mass spectrometer

Film densification:

Structure from low energy vapor at low temperature

Optimized ion bombardment or heat

- **HPPMS** · Efficient momentum transfer (Metal ion bombardment)
- Enhanced surface diffusion

Tat

Improved Microstructure in HIPIMS-MPP Deposited Thick Ta and CrN Coatings

Production Electroplated Cr

HIPIMS-MPP Deposited Thick CrN

DCMS Ta (10µm)

HIPIMS Ta (10µm)

HIPIMS Ta (100µm)

RDECOM HIPIMS Tantalum Phase Dependence on Deposition Parameter- Bias Voltage

* From- S.L. Lee, M. Cipollo, F. Yee, R. Chistyakov, B. Abraham, SVC 52nd Tech Conf. Proc., (2009) 44-49.

* From- J. Lin, J. Moore, W.D. Sproul, S.L. Lee, J. Wang, IEEE Transactions on Plasma Science, Vol 38, No. 11, (2010) 3071-3078.

PEMS-HIPIMS-MPP Cylindrical Magnetron Systems for Ta Depositions on 120mm Bore

Adding biasing and HIPIMS-MPP to Benet DOE Cylindrical System

Benet DOE, HIPIMS-MPP Barrel 8 hrs,100-120µm thick blue- 6 o'clock

Tube PP36 on Carbon Tube; Biased DC, 15 hrs, 100-150 µm thick; red- 6, blue- 9, green 12 o'clock

From- S.L. Lee, R. Wei, F. Yee, M. Cipollo, W. Sproul, J. Lin, presentation at ICMCTF, San Diego, CA, April 26-30, 2010.

PEMS-HIPIMS Cylindrical Magnetron Deposited Ta on 120mm Steel Cylinder Bore

Fractured surface of 104-106 μm PEMS Ta on 1-ft long steel cylinder

From- S.L. Lee, M. Todaro, S. Smith, R. Wei, K. Coulter, SVC 52nd Tech Conf. Proc., (2009) 558-563.

Properties of HIPIMS-MPP Deposited Thick Ta Coatings on A723 Steel

Pulse Laser Heating (2.5 msec, 1.0 J/mm2, 20 cycles, simulating ~1400°C temperature)

125 µm HC Cr on 120mm Diameter Steel Cylinder

90µm HIPIMS-MPP Ta on Steel

α+β-Та α-Ta 280 22 Floating Young's modulus [GPa] Hardness [GPa] 240 220 10 −■− Hardness 180 O- Young's modulus 160 -100Negative bias voltage [V]

HAZ (Heat affected zone) in steel is due to tempered to untempered martensite transformation.

	PL-Ta Mines 2-01			
	Depth of Diamond (μ)	Knoop (Hk ₅₀)	Diamond Length (µ)	
	-98.35	530	36.64	
-Steel	-79.34	505	37.57	
	-62.38	451	39.68	
	-31.43	815	29.54	
- HAZ	-16.72	752	30.75	
	-6.63	823	29.84	
	12.15	569	35.33	
_	28.53	598	34.52	
- Ta	46.51	649	33.10	
	61.02	649	33.10	
	75.43	623	33.82	

HIPIMS-MPP Cylindrical Magnetron Deposited Ta on 120mm Cylinder Bore

- * Pulse Laser Heating (2.5 msec, 1.0 J/mm2, 20 cycles, simulating ~1400°C temperature)
- * DOE-Z2-2 (MPP, substrate ground, 106 µm, no HAZ, no cracking, no delamination)

Z2-2				
Diamond Length (µ)	Knoop (Hk ₅₀)	Depth of Diamond (μ)		
46.86	326	5.67		
47.18	319	25.78		
47.51	315	45.53		
47.32	318	64.51		
48.96	297	82.74		

Intensity [CPS]

HIPIMS-MPP CrN Coatings For Weapons Coatings and Remediation

Phase formation of CrN coatings depends on the % N₂ in Ar gas.

From- Jianliang Lin, William Sproul, John Moore, Sabrina Lee, S. Myers, Surf Coat Tech 205 (2010), 3226-3234.

HC Cr

HIPIMS-MPP CrN

DCMS CrN

HIPIMS-MPP CrN Coatings Hardness and Young's Modulus

From- Jianliang Lin, William Sproul, John Moore, Sabrina Lee, S. Myers, Surf Coat Tech 205 (2010), 3226-3234.

ASTM Standard Corrosion Test Using a Potentiodynamic Tester & Sea Water

- ASTM G3-89 "Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing"
- ASTM G5-94 "Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements"

ASTM Standard Corrosion Test Potentiodynamic Polarization Test

PEMS and HIPIMS CrN coatings showed 2 orders of magnitude improved corrosion resistance compared to electroplated HC Cr

Current Density in µA/cm², Log Scale

HIPIMS-MPP CrN Coatings Coefficient of Friction and Wear Rate

Test conditions: 10 N normal load, 200 rpm, 5hr, sliding against a 5 mm Al₂O₃ ball

^{*} Jianliang Lin, William Sproul, John Moore, Sabrina Lee, S. Myers, Surf Coat Tech 205 (2010), 3226-3234.

Clean and Dense Interface Microstructure of MPP CrN Film on Si

From- J. Lin, W.D. Sproul, J. Moore, S. L. Lee, R. Chistyakov, 'Recent advances in Modulated Pulsed Power Magnetron Sputtering for Surface Engineering', JOM, June (2011) 48-58.

RDECOM State-of-Art PVD Deposition Systems

Conclusions

- New PVD technology PEM with higher plasma density, and HIPIMS-MPP processes generating high intensity metal plasma for deposition of dense quality coatings with less columnar microstructure.
- New technology successfully deposited Ta 100-150 μm on 120mm diameter cylinder bore; Ta phase is sensitive to deposition parameters.
- New technology successfully deposited 10-55 μ m fcc CrN coatings on steel; formation of CrN and Cr₂N phases depends on N₂ concentration.
- New thick PVD Ta demonstrated dense bcc Ta coatings with excellent ductility, microstructure, and high temperature properties.
- New thick PVD CrN demonstrated dense coatings, good microstructure, high hardness, good modulus, superior corrosion resistance, superior wear resistance properties.
- □ New technology can deposit environmental-friendly coatings, Ta & CrN, for potential replacement of production HC Cr coatings for ordnance.