

Presentation NDIA Guns & Missiles 2011

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

David C. Smith, P.E.
US Army Benét Laboratories
1 Buffington Street
Watervliet, NY 12189
518-266-4741

Objective: To provide an overview of the US Army Benet Laboratories strategy to advance
the state-of-the-art in defining product data, acquiring products in a timely, cost effective
manner, and to update and maintain the techniques used to model products, maintain and
improve the data, and to fabricate the end items. Further to serve as a model for the
Department Of Defense agencies in the modernization of design, fabrication, acquisition
capabilities

Facts:

- Government Technical Data Packages (TDPs) contain design information but no information about manufacturing
- 85% of companies surveyed indicate that they <u>use 2D drawings as their baseline</u>, even when solid models are available. (1) The US DOD still uses 2D drawings as the legal documentation for acquisition and database
- Studies by industry and DoD have demonstrated that the use of 3D modeling during design can reduce development cycle time by 30%+ (1).
- Studies by industry indicate that the use of 3D modeling during design can reduce non-conformances by 35%+ (1, 2).
- Next Generation Machining and Modeling Technology is not a single element program but a strategy that looks at the:
 - Design process
 - Fabrication process
 - Management of these elements

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Model Centric Approach:
 - Actually comprised of 3 separate elements
 - Model Centric Design
 - Model Check
 - Model Based Environment
 - Not a project or a program, but a new strategy in how parts are concepted and designed
 - Not just the design information and intent, but all information necessary to support manufacturing the part to it's design intent

Model Centric Design:

- Defined as ". . a Model-based (or -centric) design is an approach that puts 3D models at the center of the design (1)."
- The 3-Dimensional model serves as the basis of information for all design, analysis, fabrication, inspection, maintenance, repair, re-work, etc
- Detailed data or characteristics is contained in the solid model files including
 - Physical geometry
 - Tolerances
 - Material characteristics
 - Coating/Finishing
 - Manufacturing Data *
- Allows re-use of solid data across the enterprise
 - in other designs
 - in other software tools
 - for other purposes

Model Check:

- Is a process that compares the solid geometry and tolerancing to an established set of standards to validate the design.
 - Can utilize a mix of automated software tools
 - Should include independent review by other individuals
- Model Check can be tailored
 - To review only tolerancing
 - To address producibility
 - To assess model geometry for stability

- Model Based Environment:
 - A fully integrated and collaborative environment founded on 3D product definition detailed and shared across the enterprise; to enable rapid, seamless, and affordable deployment of products from concept to disposal.
 - An approach to maintain all data in a common data base to serve as the basis for all:
 - Design Analysis
 - Interface to Enterprise Resource Planning: Raw material orders, Fabrication
 - Re-Use of data
 - May utilize native CAD formats or neutral file formats

In a Model Based Environment

- People Access Data

- 3 D Models contain all design information

- Challenges to realize Model Centric within DOD (organic design & manufacturing)
 - Not all design details can be accurately modeled in CAD Packages
 - Not all CAD packages generate solid data that will:
 - Translate accurately into neutral formats
 - Translate accurately into Manufacturing Software
 - 3D models not transferable into other platforms
 - 3D file format changes can render old formats obsolete
 - Information Technology structure are at odds with government security protocols
 - Units translation needs additional user modification

- Challenges to realize Model Centric outside DOD
 - Substantial amounts of legacy data exist in 2 D records only:
 - 2D PDF and C4: Current Army Document of Record
 - Investments in modeling these products must be driven by an economic model
 - Intellectual Property protections not well defined in 3D models
 - Optimal design for 1 vendor/process may be suboptimal for another vendor/process
 - Use of 3D data can create barriers to smaller vendors unable to make 3D capability investments

- Challenges to realize Model Centric outside DOD
 - Visualization of data

- Smart Machine Platform Initiative
 - A framework for the identification, development and transition of technologies that recognize the goal of 'First Part Correct' Manufacturing
 - Demonstrate technologies identified to produce the first and every subsequent part and part feature to specification without unscheduled delays or significant human intervention.
 - Transition program through organic DoD facilities and DoD contractors
 - Bottom line: Timely and cost effective acquisition of DoD components
 - Issues Addressed
 - Rapid production and cost reductions required
 - Costly tooling for low volume production
 - Producibility issues / Rework and scrap rates
 - Knowledge retention / Aging workforce
 - Diminishing supplier base

Thrust Areas:

- Intelligent Process Planning
 - Feature Recognition semi automatic programming: 120 mins → 15 mins
 - High Performance Machining Optimization saves 30% 50% of machining time
 - Tool Data Management Integrated with ESPRIT (CAM)
 - Virtual Machining Reduced cutting errors
- Machine Tool Health & Maintenance
 - Increased Tool Life & Availability
 - Reduced Turnaround time
 - Correction of minor problems, preventing catastrophic ones
 - Plan for maintainance during downtime
- Tool Condition Monitoring
 - Reduced Costs & Scrap; Fewer Process Interruptions
 - On-Machine Vision
- Intelligent Machining Network
 - Allows storage & organization of CNC programming
 - Communication of objective, real-time process data

How is it done today?

Limitations:

- •2-D TDP as "master" / Regeneration of 3-D Model
- Lack of lessons learned / feedback
- •Limited in-process verification
- Ineffective producibilty review

- How are we approaching the Smart Machine Platform Initiative?
 - Identify / Develop, Validate and Demonstrate enabling technologies:
 - Create demonstration test beds for enabling (Smart Machine) Technologies
 - Assess the Capabilities and Limitation of the technologies
 - Assess & Validate each Technology to "First Part Correct"
 - Focus: Return on Investment
 - Determine the Inter-relationships between technologies
 - Identify Technology Gaps
 - Provide the introduction of technology to industry & DoD
 - Demonstrate technologies in in-house (Benet) shops
 - Demonstrate/Transition technologies to organic (DOD) facilities
 - Involve private vendors through SMPI Umbrella
- Interaction with Logistics Modernization Plan

Benét Process Vision and Theme Knowledge Driven Manufacturing

Above the Shop Floor

Knowledge Base*StandardizationControlCertification

Manufacturing
Shop Floor

* Knowledge Base = Intellectual IP

- Logistics Modernization Plan
 - An Army wide Enterprise Resource Planning system being implemented now.
 - Dovetails with SMPI by:
 - providing a smart network to distribute information
 - Extending planning into materials, tooling, acquisition
 - Addressing user demand/needs
 - Creating a database for evaluation

ERP Business Process Overview

High Level ERP Closed-Loop Business Process Model - LCMC View

Customer / Partner / Supplier Integration

<u>Advisory Group (Est. 2006)</u>

Smart Machine Platform Initiative (SMPI)

Future Intelligent Integrated Machining Technologies

(FITMaT)

Government Advisory Group

- U.S. Army ARDEC Benét Labs DoD Lead
- U.S. Army Research Laboratory
- U.S. Air Force ManTech
- Defense Logistics Agency
- NIST Manufacturing Engineering Lab
- NNSA Y-12 National Nuclear Complex

Industrial Advisory Group

- BAE Systems
- The Boeing Company
- Caterpillar, Inc.
- Cincinnati Machine
- Delphi Automotive
- Ex One
- Ford Motor Company
- GE Aviation
- GD Land Systems
- GD Ordinance & Tactical Systems
- Hurco Companies, Inc.
- Lockheed Martin
- Pratt & Whitney
- · Remmele Engineering
- Rolls Royce
- Sikorsky Aircraft Corporation
- Vought Aircraft

- Challenges to implementing Smart Machine Platform Initiatives within organic manufacturing or using other vendors
 - Disparate file formats, databases, optimization approaches create communication barriers.
 - Low demand quantity environment makes it difficult to identify large scale cost savings to justify investment, implementation
 - Established workforce sees increasing 'knowledge based' tools as a threat
 - Outside the organic manufacturing base, many unique, small vendors lack the resources, communications links, skill levels to implement some of the SMPI elements
- Why does Smart Machining Platform make more sense for DOD than many other industries
 - Low demand level, wide variety of parts needed on high priority basis
 - Allows very flexible manufacturing approach
 - Allows lessons learned to be retained outside of organic (human) skill base

- Next Generation Manufacturing:
 - A series of initiatives to explore advanced manufacturing techniques to reduce costs and to bring new capabilities into DOD Products
 - Focus on "Additive Manufacturing Processes" to exploit the digital models available through the Model Centric approach and reduce waste materials
 - Laser Enhanced Net Shaping (LENS) System an <u>additive</u> system approach
 - StereoLithogrAphy (SLA) generation of near net shape parts in polymers
 - Other approaches include the integration of new techniques with existing processes to focus on net-shape or near-net-shape results
 - Use of SLA with castings
 - Direct tool path generation for waterjet cutting machines
 - Utilizes features of SMPI to enhance routing, material processing
 - Provides cost effective fabrication of low production runs on unique parts
 - Provides new capabilities

- Challenges to implementing Next Generation Manufacturing
 - Modeling of parts for new processes may require new design approaches and optimization
- Why does Next Generation Manufacturing make sense
 - Focus on additive manufacturing processes leads to less waste
 - Focus on additive manufacturing processes means lower investment in raw materials
 - New processes can yield new materials that increase performance of equipment

Questions?

References:

- 1. "3D CAD and Model-centric design", Design World, 05 Dec 08, Jennifer Herron
- 2. "Software Checks CAD Models For Flaws", Machine Design, 4 Mar 04
- 3. http://usa.autodesk.com/adsk/servlet/pc/item?siteID=123112&id=10956086
- 4. "Check CAD models for quality. (CAD)" *The Free Library* 01 July 2003. 03 November 2010 < http://www.thefreelibrary.com/Check CAD models for quality. (CAD).-a0105644526>.
- 5. http://model-based-enterprise.org/model-based-enterprise/Default.aspx
- 6. "Mold Design Using Solid Modeling Techniques", *Moldmaking Technology*, 04 Feb 08, Lyle Fischer and Wojtek Zietak

