

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Dr. Eugene Rozumov, D. Park, T. Manning, C.P. Adam, J. O'Reilly, J. Laquidara, E. Caravaca

Armament Research Development Engineering Center

NDIA – 46th Annual Gun & Missile Systems Conference & Exhibition August 2011

STAR ATO High Performance Igniter

Problems:

- ➤ Benite doesn't perform as well as BKNO₃ in 120MM tank rounds
- Benite gives inconsistent performance results.
- Future rounds need smaller igniter tubes.

Solution:

- ARDEC has developed an igniter formulation
 - Excellent and consistent performance
 - Less sensitive than Benite
 - Is more energetic than Benite.
 - Extrudable
 - Smaller Ignition Delays

High Performance Igniter

Possible Causes:

- ➤ Type IV BKNO₃ igniter has an oxygen balance of -35%
 - After firing, all of the oxygen in the barrel is exhausted
 - Boron combustion requires large amounts of oxidizer
 - Opening of breach allows a rapid influx of oxygen which ignites uncombusted boron (or other fuel)

- Made of:
 - > 70% Potassium Nitrate
 - > 30% Boron
 - Easily ignited at low P.
- High Gas Content
- Burn Rate insensitive to P.
- Hygroscopic (less than Black Powder)
- Flare Back (Incomplete oxidation)

Benite

- Made of:
 - > 40% Nitrocellulose
 - ► 6.3% Sulfur
 - 44.3% Potassium Nitrate
 - > 9.3% Charcoal
 - 0.5% Ethyl Centralite
- Performance as an igniter is adequate for tank applications.

Properties of Binders Considered

$$\begin{array}{c|cccc}
ONO_2 & ONO_2 \\
O_2NO & ONO_2 \\
ONO_2 & ONO_2
\end{array}$$

Nitrocellulose

$$\rho = 1.66 \text{ g/cc}$$

$$\Delta H_f = -690 \text{ kJ/mol}$$

$$T_v = 3331 \text{ K}$$

$$O.B. = -31\%$$

Glycidyl Azide Polymer (GAP)

$$\rho = 1.29 \text{ g/cc}$$

$$\Delta H_f = 176 \text{ kJ/mol}$$

$$T_{v} = 2288 \text{ K}$$

$$O.B. = -121\%$$

Cellulose Acetate/Butyrate

$$\rho = 1.22 \text{ g/cc}$$

$$\Delta H_f = -1630 \text{ kJ/mol}$$

$$T_v = 1052 \text{ K}$$

$$O.B. = -160\%$$

 $\rho = 1.30 \text{ g/cc}$

 $\Delta H_f = 373 \text{ kJ/mol}$

$$T_v = 2246 \text{ K}$$

$$O.B. = -124\%$$

Distribution authorized for Public Release: March, 2011.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

FNGUN Analysis

- Instantaneous Ignition along the igniter tube.
- No Pressure Differentials.

- Staged Ignition from the middle of the igniter tube.
- -50 MPa Pressure Differentials.

Sensitivity Analysis

	Igniter Sensitivity			
Formulation	Impac t ERL (cm)	ВОЕ	Friction (GO / No GO) (N)	ESD (J)
Benite	18.8	6 of 10	288 / 252	>0.25
BKNO3	23.2	10 of 10	> 360	>0.25
PAI-8556	22.4	7 of 10	240 / 216	>0.25
PAI-8557	24.6	5 of 10	324 / 288	>0.25
PAI-8558	>100	0 of 10	252 / 240	>0.25

Small Scale Burn

Material	Burn Time	Explosion	Detonation	Pass/ Fail
	Less 1 Sec.	NO	NO	Pass
PAI-8556	Less 1 Sec.	NO	NO	Pass
	Less 1 Sec.	NO	NO	Pass
CHET HOLE	Less 1 Sec.	NO	NO	Pass
PAI-8557	Less 1 Sec.	NO	NO	Pass
	Less 1 Sec.	NO	NO	Pass
	2.01 Sec.	NO	NO	Pass
PAI-8558	2.79 Sec.	NO	NO	Pass
PASSINA	3.05 Sec.	NO	NO	Pass

Thermal Stability

Material	Starting Weight	Total Loss	Pass - Fail
PAI 8556	50.4135gms	.1464gms	PASS
PAI 8557	50.2485gms	.2614gms	PASS
PAI 8558	50.2745gms	.1545gms	PASS

Critical Diameter

Official Biarriotor				
Lot#	Diameter	Result		
8551	0.1345	NOGO		
8551	0.1350	NOGO		
8558	0.1405	NOGO		
8558	0.1415	NOGO		
8556	0.1420	NOGO		
8556	0.1440	NOGO		
8557-3	0.1400	NOGO		
8557-3	0.1385	NOGO		

Small Scale Ignitability Study

Expected Data

Benite at Ambient Temperature

PAI-8557 Un-Ground BKNO₃

Analysis of P_{max} and t₂

Analysis of t₅ and t₆

Analysis of the the Analysis of the

High Speed Video Stills of Benite Igniter at Ambient Temperature

High Speed Video Stills of PAI-8556 at Ambient Temperature

High Speed Video Stills of PAI-8556 at Ambient Temperature

Conclusions

- Benite was found to have significant shot to shot variability in terms of pressure and time.
- ❖ Extrudable BKNO₃ analogue igniters were able to achieve P_{max} faster than benite with less variance in ignition delays and output pressures than benite demonstrating that the analogue igniters are more consistent.
- High speed video of the ignition events also demonstrated more hot particle and flame generation in the BKNO₃ analogue igniters in comparison to benite.

