Scalable Gen-Set Concept for Directed Energy Weapons

Presented for:

The 46th Annual NDIA Armaments Systems, Gun & Missiles Conference, Abstract 11828 Aug 29 – Sept 1, 2011

Presented by:

Mr. Bryan Bockmon, President Rocky Mountain Scientific Laboratory

Denver, CO

Tel: (303) 792-3336

bbockmon@rmsl.net

WWW.RMSL.NET

RMSL Background

Energetic Materials Specialists

- Explosives, propellants, pyrotechnics, nano-composites, fuels, oxidizers, etc.
- Design & Synthesis
- Chemical and Material Characterization
- Performance Evaluations

Test Engineering

- Laboratory & Field Studies
- Improvised Explosive Devices
- Munitions

Modeling

• FEA, CFD, Hydrocode, Multi-Physics

Directed Energy Overview

Pros – Tunable Energy

- Anti-Materiel
- Area Denial
- Vehicle/Vessel Disablement
- Counter-Personnel
- Crowd Dispersal
- Distract/Disorient
- Reversible Effects

Cons – Power & Weight

- Rapid Start
- High Demand
- Short Duration
- Proportional Control
- Portability

Area Denial System – 95 GHz

Problem Definition

Develop a power supply system that offers the following:

- Near instant response
- High-demand capabilities
- Refueling/recharging/reloading convenience
- Smaller, lighter, and more scalable than other gen-sets
- Potential for man-portable DE systems

IT BECOMES A POWER TO WEIGHT RATIO PROBLEM WITH INTERESTING CONSTRAINTS!

Power to Weight Statistics

Generator	Туре	Power	Weight	Power/Weight
Smart Fuel Cell Jenny 600S ⁷	Fuel Cell	.0038 hp	3.8 lbs	.001 hp/lb
Energizer 522 Alkaline 9V ⁶	Battery	.006 hp	.1 lbs	.06 hp/lb
GM 6.6L V8 turbo Diesel ³	ICP	330 hp	825 lbs	.4 hp/lb
Mazda 13B-MSP 1.3 L Wankel ⁴	ICR	247 hp	268 lbs	.92 hp/lb
BMW V10 3L P84/5 ⁵	ICP	925 hp	201 lbs	4.6 hp/lb
Pratt and Whitney J58 ¹	Jet	160,000 hp	6000 lbs	26.7 hp/lb

Generator	Туре	Thrust	Weight	Thrust/Weight
Pratt and Whitney J58 ¹	Jet	150,000 N	26,700 N	5.62 N/N
GE90-115B ⁸	Jet	511,545 N	81,221 N	28 N/N
Pratt and Whitney RD-180 ²	L Rocket	4,152,000 N	53,700 N	77.3 N/N
Rocketdyne F-19	L Rocket	7,740,500 N	82,290 N	94.1 N/N
Solid Rockets ¹⁰	S Rocket	Varies	Varies	5 to 200 N/N

¹ http://www.marchfield.org/sr71a.htm ² http://www.astronautix.com/engines/rd180.htm ⁸ http://www.geae.com/engines/commercial/ge90/ge90-115b.html

³ http://eogld.ecomm.gm.com/images/mediumduty/techspecs/engine.pdf ⁴ http://www.mazda.com/mazdaspirit/rotary/about/

⁵ http://www.allf1.info/engines/bmw.php ⁶ http://data.energizer.com/PDFs/522.pdf ⁷ http://www.sfc.com/en/man-portable-jenny.html

⁹ http://www.rocketdynearchives.com/engines/f1.html 10 Sutton, George. Rocket Propulsion Elements (1986)

Types of Rocket Motors

- Solid Propellant carries all of it's own oxygen, can be single or multi component.
- Liquid Liquid propellant is injected into combustion chamber. Propellant carries all of it's own oxygen, can be single or multicomponent.
- Hybrid Solid fuel with injection of liquid oxidizer, allows for easy adjustment of power.

Prior-Art Analysis

Existing Patent

- Backup electrical power for aircraft with engine failure
- One or more solid propellant motors
- Turbine power extraction
- Instant response, short duration, light weight (compared to batteries)

Efficiencies

Motor Design Considerations

- Up to 98% of the mass in solid propellant motors can be energetic
- Neutral burn rates keep constant power applied to the turbine
- End-burning propellant configuration increases duration of burn
- Center-perforated motors maximize power
- Hybrid motors allow throttling

All pictures from Sutton, George. Rocket Propulsion Elements (1986)

System Integration

Weekend Research Project

Version 1.0

- Hobby grade motors (Estes)
- Die grinder turbine
- 18VDC generator, 20,000 RPM
- Worked with air supply
- Worked for seconds with motors

Version 2.0

- Custom motors
- Double based propellant
- Motorcycle turbo
- Size mismatch
- Ruptured motor casings

Desired End-State

Conclusions

- Solid propellant gen-sets show promise for DE applications
 - Extensive scalability
 - Propellant motors already in logistics chain
 - Instant response, high power, light weight, reloadable, compact,
- Quantum-leap developments are not always necessary for a significant capability increase
- Recycling/re-applying existing technologies offers a wealth of potential
- Questions?