

Physics-Based Modeling and Simulation of Shock-to-Detonation Transition in Energetic Materials

Thomas L. Jackson

Mark D. Brandyberry

IllinoisRocstar LLC

Champaign, IL

Promoting National Security Since 1919

Physics-based Modeling In Design & Development for U.S.

Defense Conference

Outline

- IMSim Infrastructure
 - Insensitive Munitions Simulation package
- Rocpack
 - Models the microstructure
 - Validation
- RocSDT
 - Shock-to-detonation physics code
 - Verification
 - Examples

Issues with Energetic Materials

- Shock sensitivity of energetic materials
 - Material defects can augment shock sensitivity
 - Geometric effects (voids, crystal shape, binder) are important
- Modeling the microstructure is important for predictive simulations
 - Homogeneous modeling not predictive
- Difficulties at the mesoscale
 - Complex geometry
 - Multi-material interfaces
 - Complex chemical reaction pathways
- Goal
 - Develop virtual engineering infrastructure to predict properties and dynamics of shock-induced initiation in energetic materials

AP/HTPB Solid Propellant

PBX9501 (C. Skidmore, LANL)

Value Proposition

- Mesoscale structures and effects control the response of energetic materials
- IMSim tools, when complete will allow
 - Analyzing existing materials to explain observed effects
 - Designing new materials to tailor predicted properties and IM response before formulation and testing
- Replace "some" of the make-and-break cycle
- Produce detailed mesoscale response and effects for input to macroscale simulation tools
 - IllinoisRocstar's Rocstar Simulation Suite
 - Other shock physics, FEA, CFD codes

Microstructure Modeling

- Rocpack packing code
- Microtomography data for real energetic materials

Rocpack

- Rocpack is based on the concurrent packing algorithm described by Lubachevsky and Stillinger, J. Stat. Phys. 1990
- Spheres of zero initial radius with random locations and velocities grow in a box at a prescribed growth rate a_i
- Stopping criterion
 - specified packing fraction
 - jammed

Shapes generated by Rocpack

Modeling Crystals for Energetic Materials Using Rocpack

 Sphere packing algorithm extended to include crystals using level sets to describe the shapes

- Stafford, D.S. and Jackson, T.L. (2010) Using level sets for creating virtual random packs of non-spherical convex shapes. Journal of Computational Physics, Vol. 229, pp. 3295-3315.
- Jackson, T.L., Hooks, D.E., and Buckmaster, J. (2011) Modeling the Microstructure of Energetic Materials with Realistic Constituent Morphology. Propellants, Explosives, Pyrotechnics (in press).

Rocpack Crystal Packing

250 total HMX crystals 10 different particle sizes [55, 281] microns Frames stopped at volume fraction 0.68

Computational Crystal Pack

- Example: Low-density unpressed HMX (68%) pack
- Figure shows 3-D pack (each size colored differently) and a 2-D slice through the 3-D pack

Plastic bonded explosive (HMX 95%, 5% binder)

3-D 2-D slice

PackMesher

- Currently supports separated spheres and tetrahedral mesh
- Extending to all other Rocpack shapes and shapes that touch

Validation of Rocpack

2
1.5
X
To 1
0.5
X
To 1
0.5
X
X = r/d
Rocpack
Experimental

Radial distribution function

Tomography
Validation data or directly for packs

Compare first, second, and third-order statistics

AP/HTPB

80% 200 micron AP; 1:1 fine to coarse; 20% HTPB

CL20/HTPB

80% 200 micron AP; 1:1 fine to coarse; 20% HTPB

Shock to Detonation Modeling

- Code status
- Background
- Verification
- Borne data comparison

RocSDT

 Three-dimensional compressible reactive flow solver for explosives

- Current characteristics of RocSDT
 - Strong shocks ✓
 - Sharp material interfaces
 - High density ratios (voids) ✓
 - Multiple EOS ✓
 - Kinetics/Chemistry
 - Microstructure from Rocpack ✓
 - Material deformation
 - Three-dimensional
 - Parallel using MPI ✓

Pack of HMX crystals produced by *Rocpack*

Zhang, J, Jackson, T.L., Buckmaster, J.D., and Freund, J.B (2012) "Numerical Modeling of Shock-to-Detonation Transition in Energetic Materials," recently accepted in *Combustion & Flame*.

Governing Equations

Reactive Euler equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla p + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = 0$$

$$\frac{\partial E}{\partial t} + \nabla \cdot ((E + p)\mathbf{u}) = Q\Omega$$

$$\frac{\partial (\rho Y)}{\partial t} + \nabla \cdot (\rho \mathbf{u} Y) = -\Omega$$

$$\Omega = Da\rho Y e^{-E_a/R_u T}$$

$$E = \rho \left(e + \frac{1}{2} \mathbf{u} \cdot \mathbf{u} \right)$$

Multiple Equations of State (ideal, stiffened, Mie-Gruneisen)

Maintain Sharp Interfaces

- Interface capturing method; Φ is a material marker
 - Changes over small number of mesh points near interfaces

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0 \qquad \qquad \frac{\partial \phi}{\partial \tau} = \mathbf{n} \cdot \nabla (\epsilon_h |\nabla \phi| - \phi (1 - \phi))$$

Move interface using this...

Correct interface position each timestep using this... τ=pseudo time n=normal vector

Density compression:

$$\frac{\partial \rho}{\partial \tau} = H(\phi) \mathbf{n} \cdot (\nabla (\epsilon_h \mathbf{n} \cdot \nabla \rho) - (1 - 2\phi) \nabla \rho)$$

Temperature and mass fraction compressions:

$$\frac{\partial T}{\partial \tau} = H(\phi)\mathbf{n} \cdot (\nabla(\epsilon_h \mathbf{n} \cdot \nabla T) - (1 - 2\phi)\nabla T)$$
$$\frac{\partial Y}{\partial \tau} = H(\phi)\mathbf{n} \cdot (\nabla(\epsilon_h \mathbf{n} \cdot \nabla Y) - (1 - 2\phi)\nabla Y)$$

Temperature Correction

- Comparison of temperature profile with (solid) and without (dash) temperature correction
- Dash/circles denote location of material interface φ

Overshoot without temperature correction will cause spurious reactions to occur.

Verification of *RocSDT*Shock-Material Interface

- Assume shock is strong enough to raise temperature between shock and interface to an ignition temperature T₀, thereby switching on chemical reaction
- The induction zone defined to lie between the shock and the (moving) material interface

Results for Shock-Material Interface (1)

- Form non-dimensional perturbation solution
- Comparison of perturbation temperature, pressure, and velocity in the induction zone using stiffened EOS
 - Asymptotic solutions: solid
 - RocSDT: dash
 - ξ = non-dimensional interface position

(d) Stiffened; Temperature

(e) Stiffened; Pressure

(f) Stiffened; Velocity

Results for Shock-Material Interface (2)

- Grid resolution study showing grid convergence of perturbation temperature
- T₁ is the perturbation temperature

Results for Shock-Material Interface (3)

- Convergence rate of perturbation temperature as a function of n (number of grid points) at material interface (square) and shock location (diamond)
- Relative error in maximum perturbation temperature

Results for Shock-Material Interface (4)

- Transition to detonation
 - The peaks are within 4% of those obtained on a grid with four times the resolution
 - CJ states captured to within 1%
 - Transition to detonation around x=600

Temperature

Pressure

Example: Borne Experiment

- Borne (1982)
 - Experimental investigation of HMX crystals in wax
 - Projectile against plate to introduce shock
 - Void content varied
 - 0.1% (Batch 1)
 - 0.5% (Batch 3)
 - Experimentally measured velocity threshold for detonation; function of crystal impurity

Periodic Single Void Model

- Borne's experiments suggests that hot spot formation due to void collapse is an important ingredient for transition to detonation
- Numerical experiment with current capabilities
 - One-step global kinetics
 - We mimic the experiment by modeling hot spots as a periodic array in an infinite slab of HMX
 - Vertical distance between hot spots corresponds roughly to volume percent of voids in HMX crystals
 - 2 μm diameter hot spot

Example: Borne Experiment (1)

T₀ (the ignition temperature) is calibrated for Batch 3; held fixed for batches 1 and 2

Results for Batch 3 Effect of changing T₀

Example: Borne Experiment (2)

Numerical simulations qualitatively reproduce experimental trend

Pressure and Species Contours for Batch 3

Example: Statistical Hot Spot Model

- Due to grid considerations, it is not possible to resolve both void collapse and heterogeneity at the same time
- Adopt a subgrid modeling approach
 - Subgrid : Simulate a small collection of voids

Mesoscale: Use data as input for a statistical hot spot model

at the crystal/grain level

Collapse of four air-filled "voids" by a shock in a stiffened-EOS medium.

Numerical Schlieren are plotted.

3-D pack of HMX and corresponding 2-D slices. Also shown are hot spot locations (red circles) for 0.1% and 0.5% voids.

2D Example: Statistical Hot Spot Model

- Pressure fields for 0 (left) and 0.1% (right) void content
- Initial shock 5 GPa
- Sample with higher void content transitions to detonation, in general agreement with Borne (1988)
- Sample without voids does not transition
- Beginning to rerun with new 3-D code

Summary

- Realistic mesoscale microstructures are important for predictive simulations
 - Rocpack packs or tomographic scan data may be used
- 2-D RocSDT simulations with basic chemistry show qualitative agreement with data
- Interface capturing, density and temperature compression critical to maintaining sharp and stable solution
- 3-D, parallel RocSDT under production – will be a core component in IMSim infrastructure

Early non-reacting 3-D simulation

Acknowledgements

- This work has been supported by several organizations over 10 years;
 - Department of Energy through the University of Illinois Center for Simulation of Advanced Rockets (Rocpack)
 - An Air Force SBIR through Buckmaster Research (RocSDT)
 - An Air Force SBIR to IllinoisRocstar (RocSDT)
- Continuing work funded by a Phase II SBIR to IllinoisRocstar through Eglin AFB

Mark D. Brandyberry

Chief Operating Officer mdbrandy@illinoisrocstar.com telephone: 217-766-2567

William A. Dick

Chief Executive Officer wdick@illinoisrocstar.com telephone: 217-417-0885

Thomas L. Jackson

Chief Scientist tlj@illinoisrocstar.com telephone: 217-333-9311

Fady M. Najjar

Chief Technical Officer fnajjar@illinoisrocstar.com telephone: 925-922-3723

IllinoisRocstar LLC
60 Hazelwood Drive, Suite 212
Champaign, Illinois 61820 USA
http://www.illinoisrocstar.com

Modeling of Void Collapse as Subgrid Component of Mesoscale Simulations

- Mesoscale simulations require the dynamics of void collapse be treated as a subgrid component due to grid resolution constraints
- Goal: Develop a subgrid model for hot spot dynamics that can be incorporated in mesoscale simulations
 - Hot spot model parameters:
 - Ignition delay time
 - Pressure and temperature
 - Time and length scales
 - Void diameter
 - Porosity
 - > Etc.
- As an initial effort, we have recently developed a 2-D flow solver with deformation for collapse of single or multiple voids

- Example 1: Wave propagation in heterogeneous medium
 - Propagation of shock through aluminum medium
 - Reflected and transmitted shear and pressure waves observed without spurious oscillations at copper-aluminum interface

Fig. 1: (Top) Pressure $(P = -(1/3)tr(\sigma))$ and (bottom) shear stress as a function of time.

- Example 3: Two-dimensional void collapse
 - Figure shows collapse of void (air) in copper medium
 - Numerical method stable for high density ratios (~ 10⁴) and different EOS
 - Strong pressure and shear waves observed in final stages of collapse

Fig. 4: Pressure contours and $\phi = 0.5$ iso-contour (solid line) as a function of time for two-dimensional void collapse.