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Outline

m IMSim Infrastructure

® Insensitive Munitions Simulation package
m Rocpack

e Models the microstructure

e VValidation

m RocSDT
e Shock-to-detonation physics code
e Verification
e Examples
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Issues with Energetic Materials

Shock sensitivity of energetic materials

e Material defects can augment shock
sensitivity

e Geometric effects (voids, crystal shape,
binder) are important

Modeling the microstructure is important
for predictive simulations

e Homogeneous modeling not predictive

Difficulties at the mesoscale
e Complex geometry
e Multi-material interfaces
e Complex chemical reaction pathways

Goal

e Develop virtual engineering infrastructure
to predict properties and dynamics of
shock-induced initiation in energetic
materials
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Value Proposition

m Mesoscale structures and effects control the
response of energetic materials

m IMSim tools, when complete will allow
® Analyzing existing materials to explain observed effects
® Designing new materials to tailor predicted properties
and IM response before formulation and testing
m Replace “some” of the make-and-break cycle

m Produce detailed mesoscale response and
effects for input to macroscale simulation
tools

@ lllinoisRocstar’'s Rocstar Simulation Suite
® Other shock physics, FEA, CFD codes
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Microstructure Modeling

m Rocpack packing code

m Microtomography data for real energetic
materials
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Rocpack

m Rocpack is based on the
concurrent packing algorithm o b
described by Lubachevsky and
Stillinger, J. Stat. Phys. 1990

m Spheres of zero initial radius
with random locations and
velocities grow in a box at a
prescribed growth rate a;

m Stopping criterion
e specified packing fraction
e jammed
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Shapes generated by Rocpack
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Modeling Crystals for Energetic Materials
Using Rocpack

m Sphere packing algorithm extended to include crystals using
level sets to describe the shapes

m Stafford, D.S. and Jackson, T.L. (2010) Using level sets for creating virtual random

packs of non-spherical convex shapes. Journal of Computational Physics, Vol. 229, pp.
3295-3315.

m Jackson, T.L., Hooks, D.E., and Buckmaster, J. (2011) Modeling the Microstructure of
Energetic Materials with Realistic Constituent Morphology. Propellants, Explosives,
Pyrotechnics (in press).
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Rocpack Crystal Packing

250 total HMX crystals
10 different particle sizes [55, 281] microns
Frames stopped at volume fraction 0.68
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Computational Crystal Pack

= Example: Low-density unpressed HMX (68%) pack

m Figure shows 3-D pack (each size colored
differently) and a 2-D slice through the 3-D pack

Plastic bonded explosive
(HMX 95%, 5% binder)

3-D 2-D slice
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PackMesher

Rocpack
output
file
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m Currently supports separated spheres and tetrahedral mesh 0
m Extending to all other Rocpack shapes and shapes that touch Y
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Tomography

Validation data or directly for packs

0.30
05

£

]

f020

-

foxs

3

0.10

095

al X)

Validation of Rocpack

25

35 = 45

Radial distribution function

fy

Compare first, second, and third-order statistics &
i: :?n« . R 44 Micron Glass Beads
- 20k —

T R

50 100 150 200 250
n

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00



14

AP/HTPB

to coarse; 20% HTPB

-1 fine

1

80% 200 micron AP
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CL20/HTPB
80%0 200 micron AP: 1:1 fine to coarse; 20%

HTPB
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Shock to Detonation Modeling

m Code status

m Background

= Verification

= Borne data comparison

©2011 IllinoisRocstar LLC
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RocSDT

m Three-dimensional compressible reactive flow solver
for explosives

m Current characteristics of RocSDT

Strong shocks v

Sharp material interfaces v
High density ratios (voids) v
Multiple EOS v
Kinetics/Chemistry
Microstructure from Rocpack v/
Material deformation

Three-dimensional v/ Pack of HMX crystals
Parallel using MPI v/ produced by Rocpack

Zhang, J, Jackson, T.L., Buckmaster, J.D., and Freund, J.B (2012) “Numerical Modeling
of Shock-to-Detonation Transition in Energetic Materials,” recently accepted in
Combustion & Flame.
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Governing Equations

m Reactive Euler equations

dp .
5 +V-(pu)=I(
c)([)u) +Vp+V - (puu)=0
ot
OF | - i
TV (E+pu) = QO
ot
d(pY)
ot

(2= Da/)Ye_E“/ RuT
I
B=p (e—i—;u-u)

m Multiple Equations of State (ideal, stiffened, Mie-Gruneisen)

+V - (puY) = -0
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Maintain Sharp Interfaces

m [Interface capturing method; ® is a material marker
® Changes over small number of mesh points near interfaces
Od do

il “NTich =—=1 _— = .v_‘iv:_:l_:
Ot +u-Vo=0 B n (en (_)‘ o o))

Move interface using this Correct interface position each timestep using this..

t=pseudo time
n=normal vector

m Density compression:
o),
e H(o)n- (V(egn-Vp) — (1 —2¢)Vp)

oT

m Temperature and mass fraction compressions:

s

oT

Y , —

—— = H(¢)n- (V(enn - VY) — (1 - 20)VY) X
ot \

0
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Temperature Correction

m Comparison of temperature profile with (solid) and without
(dash) temperature correction

m Dash/circles denote location of material interface ¢

15

10

Overshoot without
/ temperature correction
! 1 will cause spurious

prpo-o-ce-e091 reactions to occur.

405
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Verification of RocSDT
Shock-Material Interface

m Assume shock is strong enough to raise temperature between
shock and interface to an ignition temperature T, thereby
switching on chemical reaction

m The induction zone defined to lie between the shock and the
(moving) material interface

interface (£=0)

time

Material B

Material A

interface X
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Results for Shock-Material Interface (1)

= Form non-dimensional perturbation solution

m Comparison of perturbation temperature, pressure, and
velocity in the induction zone using stiffened EOS

® Asymptotic solutions: solid
® RocSDT: dash
® £ = non-dimensional interface position
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Results for Shock-Material Interface (2)

= Grid resolution study showing grid convergence of
perturbation temperature

= T, is the perturbation temperature
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Results for Shock-Material Interface (3)

m Convergence rate of perturbation temperature as a function of
n (number of grid points) at material interface (square) and
shock location (diamond)

m Relative error in maximum perturbation temperature
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Results for Shock-Material Interface (4)

m Transition to detonation

e The peaks are within 4% of those obtained on a grid with

four times the resolution
e CJ states captured to within 1%

e Transition to detonation around x=600
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Example: Borne Experiment

m Borne (1982)

e Experimental
investigation of HMX
crystals in wax

e Projectile against plate
to introduce shock

measured velocity

Batch 3

L |
L\-.\‘ . e i .
atch 2 | 'Batch1 |
threshold for 760 m/s ‘ I@/s ‘ ‘,:161;((); }:n/s .
detonation; function of T . Lot
. ) o , , |
CryStaI Impurlty 600 700 800 900 1000 1100 1200 1300

Projectile velocity (m/s)

Batch1l Batch2 Batch3
e Void content varied 294
e 0.1% (Batch 1) 5 -
e 0.5% (Batch 3 Z i O e N
( ) 3 15 \ ". e
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e Experimentally g -
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Periodic Single Void Model

m Borne'’s experiments suggests that hot spot formation due to
void collapse is an important ingredient for transition to
detonation

= Numerical experiment with current capabilities
® One-step global kinetics

® We mimic the experiment by modeling hot spots as a periodic array
in an infinite slab of HMX

® Vertical distance between hot spots corresponds roughly to volume
percent of voids in HMX crystals

® 2 um diameter hot spot

T{K

55 Batch1

300

T{K

E Batch 3
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Example: Borne Experiment (1)

= T, (the ignition temperature) is calibrated for Batch 3; held

fixed for batches 1 and 2

To
R
L ¥ —a— B93 K
i — —o— - B10K
16 ' ——a—-— 776 K
@ - \ : )
E 3
= ]
Y |
§ { Rt
B4} : %
- l
Q ' L)
> I
© ; |
= ! I
° I
Ty - . |
N I
E . |
S ! |
= : 1
i
o -}
1-—
= [ IFET SRS SPUNTR TS b 'l APETENETEY B
0 5 10 15 20 25
Shock pressure (GPa)

Results for Batch 3
Effect of changing T,

Wiave transit time (us)

25 -

20

15 1

10+

Baten3 || |

760 m/s
3.6 CPa ‘

700 800 900 1000 1100

Projectile velocity (m/s)

©2011 IllinoisRocstar LLC

1200

1300

28




29

Example: Borne Experiment (2)

= Numerical simulations qualitatively reproduce experimental trend
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Pressure and Species Contours for Batch 3

Pressure o (GPa)

Fraction of reactants remaining
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Example: Statistical Hot Spot Model

m Due to grid considerations, it is not possible to resolve both
void collapse and heterogeneity at the same time

m Adopt a subgrid modeling approach
® Subgrid : Simulate a small collection of voids

® Mesoscale: Use data as input for a statistical hot spot model
at the crystal/grain level

Py /
(7 (‘ o K\ -
» O o o . ] e »
O ( L] \{/ °

Collapse of four air-filled “voids” by a
shock in a stiffened-EOS medium.
Numerical Schlieren are plotted.

3-D pack of HMX and corresponding 2-D
slices. Also shown are hot spot locations

(red circles) for 0.1% and 0.5% voids.
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2D Example: Statistical
Hot Spot Model

m Pressure fields for O (left) and
0.1% (right) void content

m Initial shock 5 GPa

m Sample with higher void content
transitions to detonation, in
general agreement with Borne
(1988)

m Sample without voids does not
transition

m Beginning to rerun with new 3-D
code

0.5 1 0.5 1
x {mm) x {mm)
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Summary

m Realistic mesoscale
microstructures are important
for predictive simulations

® Rocpack packs or tomographic scan
data may be used

m 2-D RocSDT simulations with
basic chemistry show
gualitative agreement with data

m Interface capturing, density and
temperature compression
critical to maintaining sharp
and stable solution

m 3-D, parallel RocSDT under
production — will be a core
component in IMSIm
Infrastructure

TR [ [
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Modeling of Void Collapse as Subgrid
Component of Mesoscale Simulations

m Mesoscale simulations require the dynamics of void collapse be
treated as a subgrid component due to grid resolution constraints

m Goal: Develop a subgrid model for hot spot dynamics that can be
incorporated in mesoscale simulations

® Hot spot model parameters:
> Ignition delay time
» Pressure and temperature
» Time and length scales
» Void diameter
» Porosity
> Eftc.

= As an initial effort, we have recently developed a 2-D flow solver
with deformation for collapse of single or multiple voids
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m Example 1: Wave propagation in heterogeneous medium
® Propagation of shock through aluminum medium

® Reflected and transmitted shear and pressure waves observed
without spurious oscillations at copper-aluminum interface

Incident
shock

Copper

Aluminum

O
L

Fig. 1: (Top) Pressure (P = —(1/3)tr(o)) and (bottom) shear stress as a function of time.
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m Example 3: Two-dimensional void collapse
® Figure shows collapse of void (air) in copper medium

® Numerical method stable for high density ratios (~ 10%) and different
EOS

® Strong pressure and shear waves observed in final stages of
collapse

-—I[ncident shock
( .Air-)
\‘/

Copper

Fig. 4: Pressure contours and ¢ = 0.5 iso-contour (solid line) as a function of time for two-dimensional void
collapse.
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