

Challenges toward increased reliance on physics-based modeling in design

Ray Cosner
Senior Technical
Fellow
Director, Technology
Strategy Execution

Several factors are important in industrial acceptance of physics-based modeling tools

BDS | **Phantom**Works

Accuracy

Superior to other options?

Time

Faster end-to-end than other options?

Cost

- Total cost cheaper than other options?
- Process integration, user support, facilities

Consistency

Variability equals risk

Today's Situation

BDS | **Phantom**Works

Routine

- Steady-State Navier-Stokes in all programs
 - Assess flowfields, conduct trade studies, identify options
 - Diverse applications
- Design confirmation in wind tunnel

Emerging

- Multi-disciplinary
 - Aeroelastics
 - Simple modal analysis
 - Coupled to NASTRAN
 - Aero-acoustic, Aero-optics
- Automated Optimization
- Unsteady flow
 - Routine for rotary wing applications
 - Gaining traction for fixed-wing aircraft (where appropriate)

AH-64 Apache Computed Surface Pressure Contours

Engineering, Operations & Technology | Boeing Research & Technology

Unsteady Analyses of Hemispherical Turret for Aero-Optic Performance D=12", M=0.3, SST/LESb Turbulence Model

Engineering, Operations & Technology | Boeing Research & Technology

Animation of Iso-Vorticity Surface

Streamlines in Mean Flow Solution

What's Holding Us Back?

BDS | **Phantom**Works

Throughput and End-To-End Cycle Time

- Consistent quick turnaround essential in a schedule-driven development program
- Engineering development culminates in large databases for loads, stability and control, flight simulation

Consistency (quality control)

One "awshit" cancels out a hundred successes

CFD is a specialist tool – to a significant degree

- User skill is often key factor in getting consistent high quality results
- CFD groups have lots of Ph.D.s

Process performance set by the weakest link in the chain

BDS | PhantomWorks

Data Quality Management

BDS | **Phantom**Works

• Many ways to foul up an analysis

- Geometry setup, grid generation, modeling choices, solution execution, data analysis and interpretation
- Essential to understand the expected flow physics, and the knowledge that must be obtained from the data

Rely on identifying / using best practices to set up analyses

- Validation studies
- After-action reviews
- Trial-and-error when faced with a new problem

Rely on expert review to assess completed analyses

Can we trust these results – for critical decisions?

Versatile tools pay off in many ways

BDS | **Phantom**Works

Staff training and tool maintenance

Expert support focused on a few tools

Tailor computing infrastructure

Accuracy

Time

Cost

Consistency

Engineering Acceptance of Simulation Tools

BDS | **Phantom**Works

Accuracy

• Meets the design process need? Throughout the operational envelope?

Cost

- Cheaper than other sources?
- Person-hours, facilities, licenses, power,

Time

- Faster than other sources of data?
- From the decision to acquire data, to final delivery of data?

Consistency (Risk)

• Will we get <u>consistently</u> good results (accuracy, time, cost)?