Air Force Materiel Command

Developing, Fielding, and Sustaining America's Aerospace Force

Meeting the Challenges of Defense Budget Reductions Through M&S

Dr. Ed Kraft
Chief Technologist
Arnold Engineering Development Center

Approved for Public Release – AEDC/PA 2011-232

Integrity - Service - Excellence

Challenges

- Defense acquisition is already broken
- Reduced budgets are a fact of life
 - Fewer acquisition new starts
 - Reduced infrastructure, reduced capacity
- Over the next decade the US could loose technological superiority, economic competitiveness
- Can M&S be an enabler to overcome pending reductions and increase the output of the US aerospace industry?

Five Key Leverage Points Marked by Events – Mired by Lack of Effectiveness

RDT&E Fraction of the DoD Budget

Complexity A Self Inflicted Wound?

Runaway cycle time not inherent to added complexity

- Architecture choices
- Processes
- Process ownership
- Lack of Accountability

Aerospace industry rampant with late defects and rework

- Design tools and processes
- Lack of feedback to key design and SE processes
- Lack of quantified risk and uncertainty at key decision points

Macro-Dynamics of Acquisition

Moving From Symptoms to Systemic Causes

 Acquisition output impacted by RDT&E Fraction of acquisition costs

- <u>Discrete jumps</u> in RDT&E Fraction align with "Procurement Holidays" – not a general increase attributable to complexity
- Fundamental dynamic cycle
 - at onset of each period, procurement decreases but RDT&E stays constant because of backlog
 - At end of each period, procurement increases and so does RDT&E because of new starts added to backlog
- Correlating causative factor
 - Capability and capacity of system reduced at beginning of each cycle but not rebuilt during the ascending end of the cycle – bathtub effect, more RDT&E coming in but less going out

Acquisition system has passed a tipping point leading to pathological firefighting

Impact

COMPLEX SYSTEMS + DIMINISHED SKILLS => LONG & COSTLY DEVELOPMENT

Challenge Offsetting Further Reductions in Capacity

Capacity of Aerospace Industry Relative to Pre 1970

Cycle Time Key Effectiveness Parameter

Cycle Time ~ Workload q • Capacity

- Workload Process driven, currently ~22,000 of wind tunnel testing,13,000 of propulsion cell testing, 6-8,000 flight test hours
- q (inverse of rework) Process driven, typically have 10 structural failures found in flight
- Capacity Budget driven, availability x staffing x throughput

50% reduction in wind tunnel costs equates to just a few tenths of a percent reduction in program costs – Reducing acquisition cycle time by a month could save more than the cost of the entire wind tunnel campaign

Why Hasn't M&S Already Fixed the Problems?

- Which M&S LVC Simulators, Wargames, or Physics Based Models?
- Point of view
 - M&S vs testing
 - M&S leveraged with testing and statistical engineering to reduce cycle time
- M&S not an integral part of systems engineering processes – need to change processes to leverage M&S to reduce cycle time
- Requires government to act as a monopsony to assure continuity of integrated processes over entire life cycle and from program to program

Characteristics of M&S Domains

Simulator

- Discrete Event Simulation
- Real Time
- •High Resolution Time –Space Visualization
- Event Engineering Models
- Table Look Ups

Comm Models

L-V-C Interface

Operational Modeling

- Discrete Event Simulation,
 Agent Based Modeling
- < Real Time</p>
- Scenario Visualization
- Event Engineering Models
- Table Look Ups

Common Interface
Built on Reducing
Physics Models to
Light Weight Algebraic
Relations

Physics Modeling

- Discretized Physics
- ·> Real Time
- Phenomena Visualization

CREATE

Emerging Capability for Improving Acquisition

- CREATE is a DoD program to develop and deploy multiphysics-based software for engineering design and analysis of:
- Air Vehicles (AV)
 - Aerodynamics, structural mechanics, propulsion, control,
- **Ships**
 - Shock vulnerability, hydrodynamics, concept design
- Radio Frequency (RF) Antennas
 - RF Antenna electromagnetics and integration with platforms
- **Mesh and Geometry (MG) Generation**
 - Rapid generation of mesh and geometry representations

CREATE tools support all stages of acquisition from rapid early stage design to full life-cycle sustainment

Military platforms with antennas

Design concept

Seakeeping and resistance

Shock vulnerability

Recent Breakthrough CREATE-AV

Game Changing Engineering Process Improvement that creates lightweight algebraic models from hi-fi simulations

Conceptual Design

- Early discovery of nonlinear aerodynamic issues
- Nonlinear aero surface loads for conceptual structural design
- Nonlinear aero loads for flight control law development

Detailed Design

- Evaluation of aerodynamics from outer mold line (OML) changes
- Updated nonlinear aerodynamic surface loads for changed OML to evaluate structural design
- Nonlinear loads for flight control law refinement with detailed control surfaces

Flight Test

- Pre-flight maneuvers planned for test with any store loadout
- Eliminate benign flight tests

System Identification Model Building

Example Game Changing Process

- Compute a maneuver at a particular flight condition (only need OML)
- Knowing input angles, rates and output loads, allows an algebraic model to fit to the data

$$\begin{split} C_L(\alpha,q,\dot{q}) &= C_0 + C_1 \alpha + C_2 q + C_3 q^2 \alpha + C_4 \dot{q} \alpha + C_5 q^4 + C_6 \dot{q} q^2 + C_7 q \alpha^2 \\ &+ C_8 \dot{q} q + C_9 \alpha^3 + C_{10} \dot{q} + C_{11} \dot{q}^3 + C_{12} \dot{q}^2 + C_{13} q^2 + C_{14} q \alpha \end{split}$$

 Sys ID model gives dynamic behavior for ANY maneuver inside the regressor space AND static lift curve slope before a wind tunnel or flight test article exists

Streamlining Testing at the Campaign Level New T&E Tools + DOE

Interfaced Operations and Physics Based Models for Enhanced Analysis

Use of Validated Models to Assess Readiness at Milestone B

Cycle Time and Design Uncertainty Reduction

Summary

- The DoD is facing a critical challenge to improve acquisition in an era of reduced budgets
- M&S can be an enabler for offsetting budget reductions and improving acquisition outcome
- Challenges
 - Technologies are attainable, but will require focused efforts to validate and implement
 - Process changes to use new technologies and increased discipline at key decision points very challenging
 - Process and data/model ownership critical to success will require collaborative government and industry approach
- NDIA Members represent key industry process owners need to collaborate with government to help lead acquisition process changes