Thoughts on Modeling and Simulation in the DOE environment

David Womble
Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

High fidelity Multiple scales and physics Full environment

Requirements definition

Design

Qualification

Requirements definition

Design

Qualification

Requirements definition

Design

Qualification

How much computing is required for different phases?

How much computing is required for different phases?

How much computing is required for different phases?

Is physics-based predictive? Is predictive physics-based?

Observational M&S

- Models derived from observation
- Not predictive
- Cannot validate

Is physics-based predictive? Is predictive physics-based?

Observational M&S

- Models derived from observation
- Not predictive
- Cannot validate

Physics-based M&S

- Models based on "science"
- Can be predictive
- Incorporates multiple scales
- Can validate

Predictive modeling and simulation must be physics-based and validated

There are many engineering challenges that will rely on predictive modeling and simulation

- Large Scale/Complex Structural Response: Structural response due to severe mechanical insult including shock and penetration
- **Predictive Flight Test Simulation:** Simulated re-entry body flight environments including structural load propagation to internal component mechanical response
- Engine design on a laptop: Turbulent reacting flows in combustion, predictive simulation code for high-speed mixing & fluid jet break-up
- Thermal Mechanical Failure: Abnormal thermal environments with applicability to ship fire, plane fire, ...
- Energetic Material Initiation: Predictive capability for simulating explosives
- Electromagnetic Effects: Lightning with EM coupling
- Aging: Predictive capability for physical effects such as hardening, embrittlement, degradation
- Manufacturing: Including flows, coating with the ability to predict as-built performance

There are many research challenges needed to support a predictive engineering capability

Driven by engineering challenges

- Validated, predictive modeling approach(es) for ductile material crack initiation, propagation and fracture
- Determining pressure and velocity field turbulent aerodynamic flow fluctuations with structural dynamic load coupling models & testing (e.g. 6-degree of freedom shaker)
- Improved high resolution, time resolved diagnostics: i) imaging fluid break up, ii) characterizing explosive initiation, iii) measuring spatial and temporal plasma properties
- Computationally tractable approaches for multi-scale (10 m 10 μ m) mechanics simulations (e.g. shock/blast to structural dynamics)
- Coupled thermal-mechanical simulation with time/temperature dependent materials properties
- Determining operative lightning-induced failure mechanisms in weapon systems
- Rapid problem set up for large models with different levels of detail

Further out

- Computational design of engineered materials/structures at the continuum scale – with materials science
- Inverse analysis capabilities for failure assessments algorithm development with computer sciences
- Community geomechanics model that couples thermal/mechanical/hydraulic/chemical response with geosciences

V&V should be an intrinsic part of all elements of modeling and simulation

- V&V/UQ is a part of every analysis
- Aspects of "intrinsic V&V" include
 - SQA standards and rigorous testing methodology
 - Automatic code and feature coverage reports in each log file
 - Dynamic test suites designed around key applications
 - Support for solution convergence for various quantities of interest by users
 - Embedded sensitivities and UQ where possible linked to sample-based UQ
 - Integrated workflow that includes support for computing margins
 - Support for DoE and coupling to validation experiments
 - Code expects models and input to include uncertainties and propagates these uncertainties through simulations
 - Integrated post-processing (e.g., visualization) includes techniques for understanding and presenting uncertainties and margins
- Customers demand it, analysts perform it, scientists, engineers and developers enable it

Sandia's X-Prize is an attempt to test to predictivity of fracture and failure modeling and simulation capabilities

Three challenge problems were defined to assess failure initiation and crack propagation methods

4 Modeling Paradigms Were Used

- XFEM diplacement and discontinuities embedded in elements
- Peridynamics meshless method
- Tearing Parameter plastic strain evolution integral
- Localization Elements focused on element interfaces

Summary

- Predicting ductile failure initiation and crack propagation remains an extremely difficult problem.
- Wide variation in modeling results suggest our methods are not yet predictive.
- Limits in experimental capabilities were also observed

Closing Thoughts

- Modeling and simulation can impact all phases of the design/qualification cycle, but computing needs are very different.
- "Predictive" simulation is a high bar.
- The goal is really to be able to use modeling and simulation as the basis for decisions.

