

Accidents Happen

April 11, 1950 Albuquerque, NM

• Three minutes after departure from Kirtland Air Force Base in Albuquerque a USAF B-29 bomber carrying a nuclear weapon, four spare detonators, and a crew of thirteen crashed into a mountain. The crash resulted in a fire which the New York Times reported as being visible from 15 miles (24 km). The bomb's casing was demolished and its high explosives ignited from burning fuel.

• A B-58 bomber lost control and slid off a runway during taxi, causing portions of the five nuclear weapons onboard to burn in an ensuing fire. There were no detonations.

March 14, 1961 Yurba City, CA

• A B-52 bomber carrying two nuclear weapons crashed, tearing the weapons from the aircraft on impact. The weapons' high explosive did not detonate and their safety devices worked properly.

B-2 Bomber crash at Andersen AFB

Exerpts taken from www.cdi.org/Issues/ NukeAccidents/accidents.htm Images from airforcetimes.com

Outline

Big picture objective:

• Develop tools for modeling energetic materials in accident scenarios to enable better safety mechanism desgin and predictive risk assessment

Presentation objective:

• To present a framework (under development) for simulating pre-ignition damage in energetic materials and the resulting affect on ignition processes

Outline:

- 1. Motivation and context
- 2. Overview of coupling approach
- 3. Decomposition model description
- 4. Peridynamics
- 5. Examples
- 6. Future work and conclusions

Motivation and Context

Carbon dioxide (CO₂) sequestration

• Potential for caprock fracture leading to large-scale release back into the atmosphere

Hydraulic fracturing

• Extent of reservoir damage due to fracking and transport of chemicals

Motivation and Context

Energetic materials

• Burn dynamics and reaction violence are strongly correlated with damage in explosive materials

Goals

- Effect of pre-ignition damage on permeability of energetic materials
- Model enclosure breach and calculate gas production
- Determine fragmentation of confinement after ignition and relative energy of fragments

Hobbs, Kaneshige, and Wente. Correlating cookoff violence with pre-ignition damage. SAND2010-1183C

SITI experiments

Sealed confinement

Koerner, Maienschein, Burnham, and Wemhoff, UCRL-CONF-232590

ODTX experiments: Evidence of breached confinement

Theories for Damage Mechanisms

Primary drivers

- Phase change from condensed to gas phase leads to material weakening
- Thermal expansion of both the condensed and gas phases creates confinement pressurization that stresses the material
- Pore pressure pushes bonds in the material apart leading to weakening (inter-grain or intra-grain)
- Compounding effects like chemical reaction acceleration due to increased surface area from damage

Second-order effects

- Dislocation movement and void coalescence
- Changes in crystal structure or packing

Stages of damage during heating

Coupling Approach Overview

Damage modified permeability

- Model race tracking and decreased resistance to flow (increased permeability)
- Incorporate pore volume changes resulting from deformation of the solid media (added compressibility)

$$\bar{\alpha} = S_n \left(1.0 + \beta \frac{||\mathbf{T}^{(s)} - \mathbf{T}_0||}{||\mathbf{T}_0||} \right)$$

$$\phi = C_{\phi}(1 - (1 - \phi_0)/\det[\mathbf{F}])$$

Effective stress

• Internal force on pores brought about by the fluid/gas pressure (added stress)

$$\alpha^{(f)} = \alpha^{(f)}$$
 (damage, stress criterion)
 $\phi^{(s)} = \phi^{(s)}$ (deformation gradient)

Decomposition Model

$$\rho C_p \frac{\partial T}{\partial t} - \operatorname{div}[\boldsymbol{q}] = \rho \dot{q} S \qquad \text{Energy equation for temperature, T}$$

$$\boldsymbol{q} = k \operatorname{grad}[T] \qquad \text{Fickian diffusion}$$

$$\frac{\mathrm{d} X}{\mathrm{d} t} = -S \qquad \text{Species equation for species, X}$$

$$\frac{\partial \rho}{\partial t} + \rho \operatorname{div}[\boldsymbol{v}] = \rho S \qquad \text{Mass balance equation for pressure, p}$$

$$\boldsymbol{v} = -\frac{\boldsymbol{K}}{\mu} \operatorname{grad}[p] \qquad \text{Darcy's law (momentum balance) for velocity, v}$$

$$S = A \exp\left(-\frac{E}{RT}\right) \left(\frac{p}{p_0}\right)^r X^n (1 - wX)^m \qquad \text{Reaction rate model for source, S}$$

$$\boldsymbol{K} = f(\operatorname{damage}) \qquad \boldsymbol{K} = f(\operatorname$$

Deformation and Damage Evolution

Peridynamics

- Integral based formulation rather than differential equations
- Nice features regarding crack propagation paths
- Scalable for massively parallel
- Similarities with molecular dynamics
- Efficient for large scale damage evolution
- Can be used effectively in an explicit or implicit context
- Traditional elasticity theory can be recovered under the right circumstances

Various peridynamics simulations of projectile impact

Images taken from EMU web page. Simulations done by Stewart Silling and coworkers

Deformation and Damage Evolution

Various uses of peridynamics for modeling damage

- Mechanical deformation and fracture in the confinement
- Model for computing permeability due to damage caused by fluid-structure interaction (mixture theory)
- Cracking and void formation in the energetic material
- Combinations of the above

Model of energetic material, seal, and portion of the anvil

Flow across a porous tensile specimen

Deformation and Damage Evolution

Peridynamics formulation

• Equation of motion

$$\rho(\mathbf{x})\ddot{\mathbf{u}}(\mathbf{x},t) = \mathbf{L}_{\mathbf{u}}(\mathbf{x},t) + \mathbf{b}(\mathbf{x},t) \qquad \forall \ \mathbf{x} \in \mathcal{B}, \ t \ge 0,$$

$$\mathbf{L}_{\mathbf{u}}(\mathbf{x},t) = \int_{\mathcal{B}} \left\{ \underline{\mathbf{T}}[\mathbf{x},t] \left\langle \mathbf{x}' - \mathbf{x} \right\rangle - \underline{\mathbf{T}}[\mathbf{x}',t] \left\langle \mathbf{x} - \mathbf{x}' \right\rangle \right\} \, \mathrm{d}V_{\mathbf{x}'}$$

• Discretized equation of motion

Cells in neighborhood of x (horizon)
$$\rho(\mathbf{x})\ddot{\mathbf{u}}_h(\mathbf{x},t) = \sum_{i=0}^N \left\{ \underline{\mathbf{T}}[\mathbf{x},t] \left\langle \mathbf{x}_i' - \mathbf{x} \right\rangle - \underline{\mathbf{T}}'[\mathbf{x}_i',t] \left\langle \mathbf{x} - \mathbf{x}_i' \right\rangle \right\} \Delta V_{\mathbf{x}_i'} + \mathbf{b}(\mathbf{x},t)$$
Force state (associates bond with force density per unit volume)

Material model

Unit vector pointing from x to x'

$$\underline{\mathbf{T}}[\mathbf{x},t] \langle \mathbf{x}'_i - \mathbf{x} \rangle = \underline{t} \ \underline{\mathbf{M}}[\mathbf{x},t] \langle \mathbf{x}'_i - \mathbf{x} \rangle$$

Pairwise force based on the deformation of all cells in the neighborhood of x

$$t_e = \underline{t} + \tilde{t}(p^{(f)})$$
 Effective stress contribution

Coupling Approach Overview

Solution procedure

Lockstep solution procedure

```
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance AriaRegion
Transfer Aria_to_Presto
Transfer Aria_to_Presto_Bond
begin subcycle PrestoSubcycle
Advance PrestoRegion
end
Transfer Presto_to_Aria
End
End
```

Sierra solution control input block

Slow cookoff

Questions for accident scenarios

- Will ignition occur? Or will the reaction gases escape before pressurizing or reacting?
- How might the enclosure fragment and with how much energy will the pieces be projected?
- Does damage to the energetic material change the ignition location or the volume that simultaneously ignites?
- How can safety mechanisms like vents be designed to ensure insensitive munitions without inadvertently encouraging reaction violence?
- How does ullage effect reaction violence if at all?

Experiment Description

Problem description

- Heating drives the reaction rate which may or may not run away
- Pressure causes material damage which allows for both pressure relaxation and transport of heat via fluid through the cracks
- Enclosure breach or seal damage allows gas to escape potentially stalling reaction
- Multiphysics coupling:
 mass balance (pressure)
 energy (temperature)
 species transport (concentration)
 peridynamics (displacements/damage)

SITI device

Koerner, Maienschein, Burnham, and Wemhoff, UCRL-CONF-232590

Decomp Model Validation (No Damage)

ODTX with PBX-9502

- Vary anvil temperature measure time to ignition
- No pressure dependence
- No damage model
- No enclosure deformation
- Assuming sealed confinement

Dirichlet BC temp = 550

$$S = A \exp\left(-\frac{E}{RT}\right) X^n (1 - wX)^m$$

Reaction rate model for source, S

Decomp Model Validation (No Damage)

Time to ignition vs. anvil temperature

Permeability Changes Due to Damage

Unconfined PBX-9501

- Leading prediction is that permeability changes are mainly due to phase change
- Pressure dependent rate model
- Random initialization of bond strength
- Measure average flux/pressure and back calculate the permeability
- Specific permeability K/μ

Reaction rate model for source, S

$$S = A \exp\left(-\frac{E}{RT}\right) \left(\frac{p}{p_0}\right)^r X^n (1 - wX)^m$$

Darcy Flow

$$\boldsymbol{v} = -\frac{\boldsymbol{K}}{\mu} \operatorname{grad}[p]$$

Local permeability model

$$K = f(\text{damage})$$

Schematic of unconfined PBX-9501 sample showing random particle bond strength

Permeability Changes Due to Damage

Plots of local permeability in PBX-9501 due to heating damage for various points in time

Permeability Changes Due to Damage

Deformed configuration of PBX-9501 sample immediately prior to ignition (point B)

Confinement Breach

Stalling ignition

- For certain cases an explosion may or may not occur depending on the integrity of the confinement
- If reaction gases escape during heating, the confinement may depressurize leading to slower reaction rates

TATB powder data from Koerner, Maienschein, Burnham, and Wemhoff, UCRL-CONF-232590

Damage Evolution Characteristics

Damage evolution characteristics

- How does the material decompose inside the confinement at ignition?
- How does damage propagate inside the energetic material?

3e+07

Isosurface of damage in (top) confinement with ullage (bottom) confinement with no ullage at various times prior to ignition

Fragmentation at Ignition

Fragmentation and projectile energy

- How does ullage in the confinement affect the resulting fragmentation?
- For a given scenario, how large will the fragments be and with how much energy will they project?

Comparison of confinement fragmentation pattern for cases with ullage and no ullage

Summary and Future Work

Overview of numerical approach

- Pore pressure / effective stress addition to peridynamics
- Modified permeability based on peridynamics damage criteria

Problems of interest

- Enclosure breach
- Permeability changes due to damage
- Fragmentation of confinement

Future work

- Experimental validation
- Model development
- Justification for peridynamics effective stress from first principles

Fragmentation pattern for simple confinement at ignition

Contact information:

Dan Turner

dzturne@sandia.gov Department of Thermal & Fluid Mechanics Sandia National Laboratories (01541)