

Mooresville, NC · Alexandria, VA · Huntsville, AL · www.corvidtechnologies.com

Application of High-Fidelity Computational Fluid Dynamics to Design Optimization for Missile Static Stability

11/16/2011

Dr. Greg McGowan gmcgowan@corvidtec.com, 704.799.7944 x127

Co-authors:

Dr. James Carpenter V

Michael Eidell

Dr. Patrick Keistler

Dr. Robert Nance

Corporate Summary

COMPUTATIONAL FLUID DYNAMICS

- Vehicle Aerodynamics
- Propulsion System Performance
- Blast Wave Dynamics
- Mixture Analysis
- Finite Rate Chemistry
- Rarefied Gas Dynamics

SHOCK PHYSICS

- Lethality & Weapons Effectiveness
- Hypervelocity Penetration Analysis
- Detonation Studies
- Material Characterization
- Lethal Volume Studies
- Blast Loading on Structures

STRUCTURAL MECHANICS

- Late Time Effects
- High Strain Rate Mechanics
- Structural Design
- Penetration
- Weapons Lethality
- Intercept Debris

DESIGN

- Clean-Sheet Styling
- Class A Surfacing
- Scan Data
- Point Cloud Interpretation
- Reverse Engineering

APPLIED TOOL DEVELOPMENT

- Real-world Engineering Applications
- Tool Customization
- Internal Development + Tech. Transfer Program
- Scalable, Efficient, Physics Modeling, Pre, Post
- Raven, Velodyne, HAVOC, CTH, VGI, GAVEL

EXPERIMENTAL TEST SUPPORT

- Test Design & Analysis (pre/post test)
- Instrumentation Design / Calibration
- Test Article Fabrication
- Integrated Approach → More Efficient
 - Reduced Testing
 - Increased Understanding (Why vs. What)

THEORETICAL RESEARCH

- 6.1 Fundamental Sciences (SBIR/direct)
- Material Characterization
- EOS Development
- Innovative Computational Techniques
- Late-time Structural/Thermal Response
- Numerical Database Development

COMPUTATIONAL RESOURCE

- In-House
- 5000+ CPU (6000+ in 2012)
- 200 TB Data Storage
- High Speed Interconnect
 - Gigabit + Infiniband

- In-House-Developed Navier-Stokes flow solver
 - Tailored to customer requirements
- 3D arbitrary unstructured grid
- Robust, time-accurate implicit formulation
- Scalable to 1000s of processors
- Advanced capabilities
 - Dynamic/transient motions
 - Accurate over wide rage of Mach numbers
 - Internal shape optimization capabilities
- Auxiliary tools
 - Pre/post processing tools
 - Increased efficiency and throughput
 - Large scale databasing tools
- Continuing development

Corvid Missile Program Support

Aerodynamic Metrics

- Forces and moments
- Center of pressure
- Means and standard deviations
- Aerodynamic loading
- Static stability performance analyses

Why vs. What

- Component vs. global loads
- Data probing
- Cause versus effect

Beyond the Tunnel

- Full-scale geometry
- Flight conditions
- Dynamic capabilities
- Virtually limitless design changes

= largest deltas

Force & Moment Comparisons by Component

Component	Drag			Lift			Pitching Moment		
	P1FB	P2FB	Delta	P1FB	P2FB	Delta	P1FB	P2FB	Delta
WARHEAD*	9.319	9.790	0.471	15.478	16.035	0.557	-2406.109	-2502.229	-96.120
TAIL_FIN_4"	35.169	36.574	1.406	59.512	64.809	5.297	-583.352	-625.499	-42.147
TAIL_FIN_3*	-4.044	-4.803	-0.759	-10.623	-11.766	-1.143	161.239	169.580	8.341
STEERING_CONTROL_SHROUD_BASE*	15.268	13.567	-1.701	-7.441	-6.597	0.844	-1.959	-6.610	-4.652
STEERING_CONTROL_SHROUD*	11.393	11.620	0.226	5.922	7.150	1.229	-110.584	-116.330	-5.746
ROCKET_MOTOR"	73.847	73.203	-0.644	138.070	135.290	-2.780	-10631.020	-10437.434	193.586
GUIDANCE"	23.634	23.657	0.023	84.945	83.589	-1.356	-14617.030	-14362.778	254.253
FORWARD_SHOE_2"	1.126	1.085	-0.040	0.055	0.041	-0.014	-47.812	-44.960	2.853
FORWARD_SHOE_1"	3.221	3.120	-0.101	2.002	1.927	-0.075	-342.453	-330.671	11.781
DORSAL_FIN_4"	88.906	86.757	-2.149	180.743	175.529	-5.214	-16914.152	-16472.444	441.707
DORSAL_FIN_3"	51.028	50.298	-0.730	101.443	99.252	-2.191	-9546.066	-9304.164	241.902
AUTOPILOT_BATTERY*	11.814	11.661	-0.153	22.402	21.888	-0.515	-2929.690	-2868.675	61.015
AFT_SHOE_2"	0.460	0.443	-0.016	-0.369	-0.373	-0.004	7.476	7.652	0.175
AFT_SHOE_1"	1.117	1.138	0.021	0.441	0.440	-0.001	-27.325	-27.678	-0.353

CTP-NDIA-20111116

Evolution of Aerodynamic Databasing

- Large cost and schedule requirements historically associated with highfidelity N-S CFD aerodynamic databases (aeromaps)
 - Grid generation can be cumbersome
 - Days to weeks of run time
- Cost cutting often achieved by developing aeromaps using low-fidelity approaches (panel methods, Euler solvers, etc...)
 - Fast running capability
 - Geometric complexities can constrain these methods
 - Missing physics
 - Restrictive in Mach regimes
- Improvements in grid generation, CPU power, and numerical methods now make N-S CFD aeromaps realizable
- Corvid's aeromap development experience
 - Subsonic aeromaps developed and married to low-fidelity supersonic map for booster and booster+fin configuration
 - Five month development of abbreviated aeromap for an advanced missile system
 - Seven configurations with steering increments
 - 800+ wind-tunnel type runs (Pitch and Roll sweeps for subsonic, transonic, and supersonic Mach numbers)
 - O(3,500,000) CFD data points

Typical NS-CFD Databasing Procedure

- Development of CAD for configuration of interest
- Develop computational mesh
- Perform computational analysis
- Repeat the procedure for each additional configuration
- Costly process for large numbers of configurations

Corvid Databasing Procedure

- Development of CAD for configuration of interest
- Develop computational mesh
- Perform computational analysis

during the grid gen process

Deform grid and repeat calculations

Rigid Body Motion

- Collection of static data points would result in sparse resolution through AOA space and would be very costly
- Utilize rigid body motion pitch and roll sweeps, similar to what would be performed in wind-tunnel tests
- Yields higher resolution in either roll or pitch space
- Time-accurate solutions cost more but faster than running several static cases

Embedded Shape Deformation

- Shape deformation capability embedded in RavenCFD utilized for dorsal transformations
- Deformations controlled by moving intersections of deformation volumes
- Deformations currently controlled by the user, but can be (and has been) easily coupled to an optimization routine and controlled within RavenCFD

Front view of deformation volume.

Baseline Configuration

- Demonstration on "open source" geometry
- Adapted from the modified Army Navy Finner (modified ANF or basic finner) geometry described AEDC-TR-76-58 report
- Added dorsal fins, tail fin posts, and extended tail fin heights to be representative of typical missile geometries

Design Space

- Design Objective: Design to egress performance while optimizing cruise G capability (i.e. maneuverability)
- Design requirement: All components except dorsals must remain unchanged
- This restricts configurations changes to the dorsals only and greatly simplifies the process
- Four basic design variables are considered include: dorsal location, span, chord length, and sweep
- In this exercise 25 configurations considered, total of 58 continuous 70° pitch sweeps (~160,000 CFD data points)

Computational Setup

- Geometry consistent with ANF tunnel models
- All calculations assume sea-level conditions
- Grid generation techniques consistent with Corvid production missile runs
- Computational grid consists of 18.7M cells
- Near wall boundary layer cells sized for Mach 0.30 condition

Fin Increment Maps

- Fin effectiveness required for static stability assessment
- Deflections were accomplished using standard grid generation techniques (deflections too large for grid deformation)
- Pitch steering increments of i = +/- 20° and +/- 40° were calculated for this aeromap exercise $\left[i = \frac{\delta_{f2} \delta_{f4}}{2}\right]$
- Baseline increment map utilized for all configurations
- Assume dorsal changes do not change fin increment map
 - Reasonable assumption for small dorsal changes at low-to-moderate AOA's

CTP-NDIA-20111116

Basic Stability Analysis

- For a given configuration CN/CM carpet plots generated using fin increment maps
- Shifting Xcg results in a rotation of the carpet plot (Xcg measure from nose tip)
- Basic stability trim occurs at CM=0.0

Egress Optimization

- Egress conditions are modeled at a freestream Mach number of 0.30
- Xcg is measured in calibers from the nose tip
- Simplifications:
 - Plume, booster, and ship deck effects are ignored for this analysis
 - Mass properties are fixed
- Mass properties drive Xcg at egress and crosswinds drive AOA_{trim} requirement
- Moving Xcg forward increases egress stability

Burnout Optimization

- Cruise conditions are modeled at a freestream Mach number of 2.00
- CG location further forward due to absence of propellant/booster/etc...
- Normal force at trim, or G capability, a strong function of altitude
- Typically shifting Xcg location further aft results in higher G capability
- Trade-off exists between egress and burnout conditions "Can't have your cake and eat it too!"

Egress/Cruise Trade

- Optimizing for maximum egress stability results in lower G capability ... and vice versa
- In the plots shown:
 - Optimum egress config yields AOA_{trim}=35 and CN_{trim} = 6
 - Optimum burnout config yields AOA_{trim}=16 and CN_{trim} = 11

Static Stability Results

- Limited to families of configurations for this presentation
- Completed subsonic and supersonic continuous pitch sweeps to collect necessary data to examine effects of translation, span, sweep, chord, translation+span, and translation+sweep on trim characteristics

 Assuming linear trends between configurations we can map the space for any combination of translation, span, sweep, and chord length

Dorsal Translation

- Translating dorsals directly shifts Xcp
- Trends caused by Xcg being ahead of the Xcp location
- Egress effects:
 - Shifting dorsals aft <u>increases</u> egress stabilty
- Burnout Effects:
 - Shifting dorsals aft <u>decreases</u> maneuverability or G capability

Span Increase/Decrease

Egress effects:

- Decreasing span increases egress trim capability
- Tail fins produce majority of lift in the reduced span configurations and therefore shift Xcp aft

Burnout effects

- Increasing the span results in an increase in G capability at cruise
- Small effect on G capability for most CG locations except those > 5

Dorsal Sweep

• Egress effect:

- Little effect on egress for these configurations
- Sweeping dorsal aft shifts Xcp aft and slightly improves egress trim capability

Burnout effect:

Marginal improvement in G capability at Xcg 4.5-5.5

Dorsal Chord Expansion/Contraction

Egress effect:

- Contracting the dorsal chord results in a large aft shift in Xcp thereby significantly increasing trim AOA
- Expanding the chord marginally reduces trim capability

Burnout effect:

Increased "roof top" in CN_{trim} but little change for remainder of Xcg positions

Translation and Span

Egress effect:

- Aft translation + decrease in span exhibits the best egress trim characteristics
- Depending on mass properties one could argue the benefit of aft trans + increased span

Burnout effect:

Largest increase in G capability realized in forward trans + increased span

Translation and Sweep

Egress effect:

- Trans. + sweep can substantially improve/worsen trim AOA at egress
- Aft shift + aft sweep → largest increase in trim AOA (shifting Xcp as far aft as possible)
- Forward shift + forward sweep → largest decrease in trim AOA

Burnout effect:

Forward shift + forward sweep results in improvements in maneuverability

Results Summary

- Eighteen out of 25 configurations highlighted
- Total of 58 continuous pitch sweeps completed
 - 25 for egress
 - 25 for cruise
 - 8 pitch sweeps for fin increments
- Can drive egress and cruise trim characteristics by sizing dorsals appropriately
- Trades can be performed for each dorsal configuration
- At given Xcg locations:
 - Configs 15 &16 best at egress
 - Configs 10 &13 best at cruise
- Tremendous amount of data that can be difficult to digest ...

Corvid MIssile DESign Tool (MIDESTO)

- Missile design tool developed to expedite the data mining process
- Inputs:
 - Mass properties (Egress and burnout CG locations and weight)
 - Mission requirements (Max crosswinds at egress or max G's at burnout)
 - Burnout altitude
- Performs linear interpolations between given results to provide optimal dorsal configuration for given mission requirement and mass properties
- Useful tool to have at design roundtable discussions
- Currently limited to one design parameter (chord, sweep, location)
- Work in process to combine these

Summary

- Focused aerodynamic database generated for a missile-like configuration derived from the modified ANF
- Aeromaps were expedited using the Corvid mesh deformation capability
- Static stability analysis performed for each configuration with trends highlighted for various dorsal shapes
- Egress/cruise optimization trade-offs discussed
- Corvid missile design tool, MIDESTO, utilized to rapidly process stability results given various mass properties and mission requirements

Future Work

- Exploit the full potential of the mesh deformation capability by automatically driving designs to the optimal configuration
- Identify a fitness function which can drive an automated optimization ("submit and forget")
- Identify ways in which we can generalize this process for other design changes (i.e. tail fin changes, rocket motor diameter, etc...)

Acknowledgements

 Thanks to the aerodynamics departments at Johns Hopkins University Applied Physics Lab and Raytheon Missile Systems for their guidance on the topic of missile design

Questions?