Manufacturing Fuel Cell Manhattan Project

Presented by Carmine Meola Rebecca Morris

MFCMP Project Sponsors

Example Special Projects within the B2PCOE

- Energy Usage Ship Yard Cost Reduction
- Lead Free Manhattan Project (DOD Leverage)
- Best Practices for Assurance of Skilled Workers
- Best Practices in Ship System Integration
- Advanced Shipbuilding Affordability Technologies
- Manufacturing Fuel Cell Manhattan Project

Manhattan Manufacturing Fuel Cell Project

- MFCMP Phase 2
- Location: Butte, MT
- Dates
 - Polymer and BOP Session: March 15 20, 2011
 - Ceramic Fuel Cell Session: March 17 22, 2011
 - Joint Session Days: March 17 20, 2011
 - Leadership Wrap Up: March 23, 2011

Program Leaders

- Rebecca Clayton ONR
- Carmine Meola ACI
- Rebecca Morris ACI
- Mark Shinners ACI
- Randy Hiebert MTT
- Robert Hyatt MTT
- Jay McCloskey MTT
- Brian Park MTT
- Ray Rogers MTT

Technical Leaders

- Mark Cervi NSWC Philadelphia
- John Christensen Consultant
- Marc Gietter CERDEC
- Leo Grassilli ONR
- Shailesh Shah CERDEC
- Mike Ulsh NREL / DOE

Participants

- Joe Bonadies Delphi Corp.
- David Carter Argonne
- Mark Cervi GDIT / NSWC
- Paul Chalmers Hydrogenics
- John Christensen Consultant
- Aaron Crumm AMI
- William Ernst Consultant
- Matt Fay General Motors
- Marc Gietter CERDEC
- Leo Grassilli ONR
- Pat Hearn Ballard
- Dennis Kountz DuPont
- Rebecca Morris ACI

- Randy Petri Versa
- Joe Poshusta Protonex
- Jolyon Rawson Acumentrics
- Steve Rock RPI
- Kathryn Rutter Ballard
- Shailesh Shah CERDEC
- Duarte Sousa Ballard
- Eric Stanfield NIST
- Matt Steinbroner Consultant
- Scott Swartz NexTech
- John Trocciola Consultant
- Mike Ulsh NREL / DOE
- Doug Wheeler DJW Tech

Objectives, Benefits, and Applications

Objectives Completed

B2PCOE
Montana Tech
SME's

Industry Academia Government FC Consortiums

- Objectives Phase 1 October 2010
 - √ Identify manufacturing cost drivers to achieve affordability
 - √ Identify best practices in fuel cell manufacturing technology
 - √ Identify manufacturing technology gaps

Deliverables Phase 2 - March 2011

Manufacturing Roadmap

- Projects to resolve the gaps
- Schedule a strategy for effective investment
 - Sequence Projects
 - Prioritize Projects
 - Projects that can benefit all
- Manufacturing Fuel Cell Publication: Oct. 2011

Navy Benefits

Why the Navy Cares

- Reduce logistics and financial footprints for delivering energy
- Increase fuel efficiencies
- Modularity for distributed power systems
- Supplemental Power
- Reduce ship signatures
 - Lower thermal signatures
 - Lower audible noise
- Low maintenance when compared to diesel generators
- Lower hydrocarbon emissions
- Lower SO₂ and NO₂ emissions

Manufacturing Fuel Cell Project Taxonomy

DOD Applications That May Benefit

Target Applications

Soldier Power

Unmanned UAV

Emergency Power

Tactical APUs

Aircraft APUs

Shipboard APUs

Material Handling

System Power in Watts

Distributed Stationary Power

10

100

1000

10000

100000

1000000

Cost Drivers For Polymer Fuel Cells (MEA, BP, BOP)

Polymer Membrane Fuel Cell Session

Key Cost Drivers For Membrane Electrode Assembly (MEA)

Fuel Cell Components

- Electrode
- Pt group catalyst
- Membrane
- GDL / Seals
- Assembly

Polymer Membrane Fuel Cell Session

Key Cost Drivers For PEM Bipolar Plates

Bipolar Plate

Labor

End Plate

Stack Sealing

Hardware

Packaging

High Temp BP Manufacturing Process

BOP for Polymer & Ceramic Fuel Cell Session

Key Cost Drivers BOP

- Stack
- ATR / Reactant Management
- Mechanicals Packaging
- Controls
- Thermal Management
- Power Conditioning / Management
- Balance of Hot Zone

Example of SOFC Heat Removal

The SOFC system flow diagram shows that equipment for heat removal (and recovery) and fluid movement plays a critical role in the system.

Cost Drivers For Ceramic Fuel Cells (Planar, Tubular)

Ceramic Membrane Fuel Cell Session

Key Cost Drivers For Planar Designs

- Planar Cells
- Separator Plates
- Seals
- Manifolds
- Compression Means
- Contact Layers
- Terminal Conductor Plates

Ceramic Membrane Fuel Cell Session

Key Cost Drivers For Tubular Designs

- Recuperator
- Current Collection
- Cell
- Insulation
- Burner
- Reforming
- Seals
- Mechanical Enclosure
- Manifold

← Tubular SOFC

Coil Winding for Current → Collection

Path Forward

Manufacturing Technology Gap Categories

Manufacturing areas where projects have been Identified to resolve gaps

- Production Automation
- Production Material
- QC during Manufacturing
- QC for Product
- BOP Hardware
- BOP Performance
- Materials
- Design Performance
- Design Controls

Total of 70 Gaps Identified

About 32 Projects recommended to Address Cost Savings

Polymer Projects

- Manufacturing cost trade-off analysis on raw material
- Reduce PT loading to 0.15 g/m²
- Develop patch coating
- Direct coated layers on membranes
- Develop paper GDL for HTPEM
- Develop continuous mixing process
- Improve ink mixing process
- Direct coating layers on GDL

Polymer Projects Continued

- Process development for mitigation from discrete to continuous
- Develop X-Y gradients H₂ rich inlets to H₂ depleted outlets
- Reduce critical design requirements and defect rejection criteria
- Development of a low cost resin for HTPEM bipolar plates
- Measurement of vapor pressure of phosphoric acid over HTPEM
- Utilize metallic bipolar plates for LTPEM

Ceramic Projects

- Protective coatings for metallic stack components
- Defect free electrolyte layer
- Manufacturing of low-cost, high-efficiency insulation packages
- Solid oxide fuel cells stack manufacturing ,commission and testing
- Net shape manufacturing of stack methods
- Solid oxide fuel cell automated assembly
- Automation of current collection application for tubular SOFC

BOP Projects

- Manufacturing of low-cost, high-efficiency heat exchangers
- Liquid metering pumps for sub kilowatt reformed based FC systems
- Best practices for manufacturing anode gas movement devices
- Manufacturing improvements for fuel cell humidification systems
- Specification analysis for fuel cell power systems
- Liquid flow meter for sub-kilowatt reformer based FC systems

Fuel Processing Projects

Improve Sulfur Sensor for logistics fuels

Improve desulfurization of JP-8, JP-5, F76

FC Area vs Costs by Projects

Recommendations

- Implement discrete projects that will have an immediate benefit to reducing fuel cell cost
- Establish CALCE or SAMETAC type consortium for fuel cells
- Recommend consortium specific projects
- Establish manufacturing working group
- Propose a phase III power management and integration session
- Propose a plan to the ONR for an alternative energy COE for Naval Platforms

Discrete Fuel Cell Projects

- Application specific will have cost benefit to Navy and other DOD programs
- Immediate benefits < 3 yrs
- Unique to manufacturer proprietary to a degree - will result in cost reduction of fuel cell systems

Consortium Projects

- Addressing (DoD) specification "Feature Creep"
- Cross-cutting development of automation capabilities for cells and stacks
- Understanding critical-to-quality parameters for ceramic powder specification and enhancing supply chain leverage
- Developing transfer functions for the linkages between manufacturing variability and cell performance/durability
- Developing solutions for the transition from solvent- to aqueous- based processing
- Developing methods (protocols and transfer functions) and support equipment to enable accelerated lifetime testing for SOFC cells and stacks

Consortium Benefits

- Establish government-industry consortia to address overarching issues
- Not cost effective for individual companies to address themselves
- Work would benefit all industry
- Supports the competitiveness of the North American fuel cell manufacturing base
- Benefit from capabilities across federal agency labs and academia
- Would incorporate non-disclosure agreements where necessary

Manufacturing Working Group

- Continue collaboration and 'esprit de corps' developed in the MFCMP
- Forum for labs / academia to report on new developments related to manufacturing
- Capture manufacturing needs and issues for DoD and DOE consumption and action
- Group to be informed on DoD application requirements and developments by DoD fuel cell TWG
- Group possibly hosted by FCHEA or NDIA Manufacturing Division

Power Management and Integration

- FC power management issues were discussed in Phase I but not addressed fully
- Integration of FC power management into DoD deployed systems needs to be developed (e.g., integration with other renewables, and hybrid systems)

Path Forward

- ONR has begun funding efforts of MFCMP recommendations
- MFCMP team will brief ONR and other
 DoD PMs on the findings and potential cost savings to secure additional funding
- Propose a development of an alternative energy center of excellence

Q&A

Carmine Meola 610 362 1200 x 235

cmeola@aciusa.org

Rebecca Morris 610 362 1200 x 102

rmorris@aciusa.org

http://www.aciusa.org

http://www.navyb2pcoe.org

Manufacturing Fuel Cell Manhattan Project

Back Up Slides

Fuel Cell Project Scope

MFCMP Scope:

Power ranges

- <0.5 kW (man portable / man wearable)
- 0.5 kW< Power range < 10kW (mobile power)

Fuels: Hydrogen and reformed hydro-carbons

- Packaged Fuels < 0.5 kW
 - Near term solution
 - Move through the supply chain like batteries
 - Examples: methanol, ethanol, propane, butane, chemical hydrides, hydrogen
- Logistics Fuels > 0.5 kW (long term solution)
 - Long Term Solution
 - Examples: JP-8, diesel

Applications

Navy Applications

- Unmanned Vehicles (Unmanned undersea vehicles, UAV, UGV)
- Submarine Emergency Power

- Ship Service (0.5-2.0 MW)
- CHP base housing / apartments
- CHP PX, Fire Station
- Material Handling/Fork Lifts (DLA)
- Automotive (Camp Pendleton, 6 ea GM vehicles planned)

Applications

ARMY Applications

- Soldier Portable Power
- Battery Charging
- Power Source (hybrid configurations)
- Remote Sensors
- UAVs / UGVs
- Vehicle Auxiliary Power
- Base Camp Power

r

USMC Applications

- Man-portable Charger, CERDEC, 250 W
- Portable Power, TARDEC
- Tactical Wheeled Vehicle Onboard Power, CAASCOM, 5-10 kW

Polymer Membrane Fuel Cell Session

Major Key Manufacturing Needs Identified for MEA

- Ink mixing to coating operation minimize time
- Ink processing through continuous methods
- Correlating QC measurements to requirements
 - What tests are necessary?
- Need on-line /real time QC testing techniques
- Raw material traceability
- Relate existing metrics and to downstream product requirements
- Maximum utilization of catalyst
- High production volumes will need quick turnaround testing of subsystems

Polymer Membrane Fuel Cell Session

Key Manufacturing Needs Identified for Bi-Polar Plates

- For LTPEM the bipolar plates need the use of alternate graphite resin compositions to facilitate easier molding
- Testing and evaluating critical design parameters of bipolar plates (BP)
- A low cost metallic plate would use more conventional manufacturing process- thus lowering cost
- For HTPEM it is critical to reduce multiple heat treatments for cost reduction
- For HTPEM find a method to employ air cooling process to replace high water pressure /steam mixture

BOP for Polymer & Ceramic Fuel Cell Session

Key BOP Manufacturing Needs Identified

- Autothermal Reformers (ATR) need to operate at temperatures near or below 800°C to eliminate the use of high cost metal alloys; the latest ATR designs & catalyst appear to have resolved this issue
- Catalytic Partial Oxidation Reformers susceptible to coking issues- requiring insulative housing and filter systems
- The CO₂ and CO removal process are not designed to suit small scale reformate clean-up
- Water management systems need to utilize more efficient designs to reduce weight and cost over the present membrane modules

BOP for Polymer & Ceramic Fuel Cell Session

Balance of Plant - cont

- Commercial fuel and oxidant delivery as well as air supply components generally do not satisfy the specifications for the critical parameters for fuel cell applications
- Heat exchangers also fall into this category
- When feasible, safety and control systems should transition to software based systems
- Alternate plate fin exchangers may provide a more cost effective solution, providing low material and manufacturing costs

Ceramic Membrane Fuel Cell Session

Key Planar Manufacturing Needs Identified

- Assurance of stack quality is labor intensive requiring a more mechanized approach to assure consistency at higher volumes
- Optimization by the means of decoupling QC process would increase throughput and reduce cycle time
- There is little industry standardization for stacks. The Capital equipment to produce larger volumes is a significant cost
- An accelerated testing strategy needs to be developed for stacking as well as BOP. i.e. thermal cycling, load cycling, etc for lifetime prediction
- Optimization of coating and material selection for end plates, bipolar plates and flow field is needed.
- There is a lot of material waste in seals. A dispensing or molding process for forming seals would reduce cost

Ceramic Fuel Cell Session

Key Manufacturing Needs Identified

- Dimensional tolerances of tubes difficult with high aspect ratio tube with thin walls
- The application of a uniform electrolyte layer on the tube is challenging and is prone to yield loss
- Current collector process needs to be automated with high rate wire winding and tie off
- Current QC test for both planar and tubular FCs require in-process testing prior to stack assembly to reduce cost. This includes analysis of powders batches, slurries, tape cast, green tape, electrolytes, etc.
- The relevant tests must be identified that will affect the quality of the overall stack

Manufacturing Technology Gap Categories

Manufacturing areas where projects have been Identified To resolve gaps

- Production
 Automation
- Production Material
- QC during Manufacturing
- QC for Product
- BOP Hardware
- BOP Performance
- Materials
- Design Performance
- Design Controls

Ceramic Projects 317,445.23 **Automation** 567,264.00 **Electrolyte MU** 894,468.00 **Defect Free Electrolytes** 2,147,817.30 **Current Collection** 2,353,766.00 **Endplates** 2,672,534.00 **Endplates EES/QC Modifed** 2,864,947.44 **Ceramic Installation (2)** 2,926,421.15 **Automated Assembly** 4,313,655.60 **Increased Stack Throughout**

Coatings

4,398,636.90

Ceramic Planar Costs

Ceramic Tubular Costs

