

Technical Challenges for Vehicle 14V/28V Lithium Ion Battery Replacement

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

David Skalny

Deputy Team Leader, Energy Storage Team, US Army TARDEC May 4, 2011

Agenda

- Goals & Mission
- Introduction
- Power & Energy Requirements
- Army Applications & Approach
- Characteristics of Lithium-Ion & Lead Acid Batteries
- Lithium-Ion Battery Replacements for 14V & 28V
- Battery Voltage Requirements
- Battery Size Considerations
- Lithium Battery Performance at Extreme Conditions
- Battery Management System
- Battery Charging
- Battery Cost & Weight
- Conclusions

RDECOM Energy Storage Goals and Mission

Energy Storage Goals

- Develop safe and cost effective energy storage systems
- Reduce battery weight & volume burden (Increase Energy & Power Density)
- Reduce logistics and fuel burdens
- Extend calendar and cycle life
- Enhance performance and increase operating time (silent watch, etc)

Energy Storage Mission

- **Develop** and **mature** advanced ES technologies for transfer to vehicle platforms
- Test & evaluate ES technologies for pregualification and to assess their TRL
- Identify technology barriers and develop technical solutions
- Provide technical support to customers, other teams and government agencies for all ES requirements
- Provide cradle-to-grave support for all Army ES systems

Power & Energy Requirements

UNCLASSIFIED

Army Applications & Approach

Army Applications/Drivers:

TARDEC - Ground

- Major Applications
 - > Robotics
 - Survivability
 - Weapons Systems
 - Electromagnetic Armor (EM Armor)
 - Starting, Lighting and Ignition (SLI)
 - Hybrid Vehicle Acceleration and Silent Mobility
 - > Silent Watch
- Approach
 - Standard Form Factor (6T)
 - Ultra-capacitor/Battery/Fuel Cell Hybrid Power Sources

Key Energy Storage Challenges:

- Battery safety & reliability
- Higher energy / higher power designs & chemistries
- Manufacturing process development and cost control
- Thermal runaway process and its control
- Standardization of cells, modules and pack

Hit Avoidance

Targeting Systems

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

UNCLASSIFIED

Battery Power & Energy Versus Time (Technology Roadmap)

Energy Storage Technology: Ragone Plot (with Military Pack Targets)

Battery Logistic Burden

AGM Battery Failures 2002-2008

~5%

Approximately 80% of incorrect voltage failures were serviceable

Improved charging techniques can lead to 2X life improvement

Field Battery Maintenance & Training

* AGM = Absorbed Glass Mat.: "maintenance free"

Improved Charging

Battery Management

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

It's All About The Warfighter

Key Success Factors For Li-ion Battery Replacement

Successful introduction of Li-ion Batteries depends on a number of factors:

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Lithium Ion Batteries and Lead Acid Batteries

Battery Chemistry	Specific energy (Wh/kg)	Specific power (W/kg)	Energy Density (Wh/I)	Cycle life	Working tem range
Li-ion	120~200	200~3000	300~600	>1000	-30°C-60°C
Lead Acid	~40	300~650	80~120	100~300	-30°C-70°C

The charge-discharge characteristics of Li-ion and lead acid batteries

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Battery Standardization - Design

- Li-ion battery has to work with existing vehicle electrical system
- Li-ion battery is sensitive to the battery overcharge
- Li-ion battery is sensitive to the battery overdischarge

# of Cells	1	3	4	6	7	8	n
Nominal Voltage(V)	3.7	11.1	14.8	22.2	25.9	29.6	n x 3.7
Voltage range (V) (NCA, NCM)	2.5-4.1	7.5-12.3	10-16.4	15-24.6	17.5-28.7	20-32.8	
Nominal Voltage(V) (LiFePO ₄)	3.3	9.9	13.2	19.8	23.1	26.4	n x 3.3
Voltage range (V) (LiFePO ₄)	2.0-3.7	6-11.1	8-14.8	12-22.2	14-25.9	16-29.6	

Battery Standardization - Size

- ARMY's focus is to develop Li-ion batteries in existing lead acid standardized form factors (such as 6T, 4HN, Group 31 and Group 34)
 - Development of a set of standardized battery packs would allow for standardization of components – provide significant cost benefits.
- Implementing a 6T size battery form factor (10.5in. X 10 in. x 8.5 in.)
 would provide the following for a Military vehicle battery:
 - Allow of the use in both current force vehicles (as replacement for existing lead acid batteries) as well as next generation vehicles that are designed to utilize Li-ion batteries.
 - ➤ Increased flexibility in field can use either Lead acid or Li-ion batteries depending on availability.
 - To reduce logistic burden support limited number of battery sizes in field.
 - Cost benefits (leverage volume).

Li- Ion Battery Performance at Extreme Conditions

Low temperature operation (-40°C)

- Difficulty meeting startup requirements
 - Reduced power from increased impedance
- Reduced discharge current and capacitance
- Reduced charge acceptance/ Li Plating
- ✓ Battery heater can be added
- ✓ New electrolytes and additives are being developed.

High temperatures operation (70°C)

- √ Improves battery performance
 - Increased electrochemical reactions
- Reduced lifetime
 - Increased corrosion
- Increased safety hazard

Optimization

- ✓ Operating temp between 0-50°C
- ✓ Uniformity within and between modules

Engineering Challenge - Safety

Field failure caused by usage, control, etc

Transportation may trigger safety hazard

Battery Management System

- Needed to reduce safety hazard
- Required to increase battery life
- Monitors and reports
 - State of Charge (SOC)
 - State of Health (SOH)
 - Voltage
 - Current
 - Temperature

Design challenges

- Handling transient spikes
 - Over-charge
 - Over-discharge
 - Over-current
- Affordability
- Varied charge/discharge methods
- Communication interface
- Battery self-discharge

Battery Charging

- The charge control for lithium ion battery chemistries is different from those of flooded and sealed lead acid batteries.
- The discharge control for lithium ion battery chemistries is different from those of flooded and sealed lead acid batteries.
- Battery charging voltage changes with the temperature

Typical Alternator Circuit

Alternator Case

Challenge - Cost

- Current Lead acid battery: \$50-\$280/kWh
- Current Lithium ion battery: \$800-\$2000/kWh
- Long term target price for Li-ion battery is \$500/kWh

Batteries represent one of the top ten ongoing maintenance costs in theater.

Conclusions

- The Li-ion battery replacement offers advantages due to the winning combination of energy and power density.
- Engineering challenges for Li-ion battery Replacement:
 - **≻**Control
 - **≻**Safety
 - **≻**Cost
 - ➤ Dual Applications

