

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

7.62mm, Lethal Limited Range Round For USCG *Informational Brief for* NDIA 2011 25 May 2011

Project Overview & Objectives

Overview

- JSSAP funded effort for USCG
- 7.62mm Lethal Limited Range Round
- For use in harbor security applications.

Objectives

- Reduced maximum range
- Engage and defeat

Customer Requirements

L2R2

 Defeat 1/4 inch of mild steel at 200 meters, at a 45-degree angle

- Match trajectory of M80 out to at least 400 meters.
- Capable of defeating soft target out to at least 400 meters.
- Maximum range of 2000 Meters (1500 Meters desirable)
- Capable of being fired from an M14 rifle and M240 Machine Gun

M80

Value to Warfighter

- Operational environment close to civilian populace
- Lethal force often necessary to accomplish missions
- Use of Small Arms at times is restricted due to potential risk to civilians
- Reduced range ammunition will enable USCG to engage targets

Briefing Overview

- Project history
- Added/optimized features and how they were evaluated
- Current projectile design performance

Project History

2008

2007

2010

FY11 Tasks

- Spark Range Test
- Dispersion @ 400m
- Radar Test
- CFD Study
- Updated design
- Manufactured projectiles
- Charge Establishment
- Evaluated Penetration
- Entire Cartridge Salt-Fog Test
- Radar Test (w/ & w/o salt-fog exposure)
- Analyze & Document Results

DESCRIPTION

- One piece
- Solid Brass
- Cuts along ogive
- Standard 7.62 x51mm Case & Primer
- SMP-843 Propellant

Optimized/Added Features that Affect Max Range

Projectile (M80) Base Geometry Computational Fluid Dynamics Study

- Compared aerodynamics of flat base vs. round base M80
- Validated CFD generated static coefficients with spark range data (BRL-MR-1833)
- Base shape changes wake vortex formation and pressure distribution

RDECOM Projectile (M80) Base Geometry and Drag

Cannelure and Drag

Observed Modal Arms Damping at ARL Spark Range Test

- •Yaw damps out at muzzle velocity
- Yaw increase at Mach .75

$\lambda_{\rm F} > 0$ and $\lambda_{\rm S} > 0$ (Shot 32412, Mach 0.74)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

L2R2 vs. Automobile Windshield Glass

- 0.27" total thickness
 - Glass 0.115"
 - Laminate 0.04"
 - Glass 0.115"
 - Meets SAE Z26.1 standards
 - 50m (2800 ft/s)

L2R2 vs. 20% Ballistic Gelatin

50m Velocity (2800 ft/s)

400m Velocity (1800 ft/s)

Entire Cartridge Salt-Fog Humidity Test

Max Range Impact Area (salt-fog treated/untreated)

L2R2 Impact Area on M80 Safety Fan

Salt-Fog treated rounds travelled farther than untreated rounds

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

400m Dispersion Results

ARDEC Design vs. M80 & Contractor Design

Summary

- Significant yaw growth below Mach 1
- Ability to meet distance requirement dependant on initial QE and projectile ogive cuts being free of debris
- Trajectory similar to that of the M80
- Hard target penetration ability not equivalent to that of the M80
- Effective against soft targets and Automobile Glass

Stephen McFarlane

Project Engineer

Small Caliber Munitions Division

Tel#: 973-724-7326

Fax#: 973-724-7095

stephen.mcfarlane@us.army.mil

BACK UP

L2R2 vs. 20% Ballistic Gelatin

50m Velocity (2800 ft/s)

400m Velocity (1800 ft/s)

Ballistic Gelatin Behind Windshield

Dynamic Stability Relation to Modal Arms Damping

Stable

- Both arms negative (shrinking) or neutral (not growing)
 - No yaw
 - Limit cycle

Unstable

- Nutation (fast) arm is positive, precession arm positive (growing)
 - Yaw level increases
 - Tumbling possible

Non-linear Magnus Moment

Stability of this round at Mach 0.8 at experimental spin rates is questionable at best

