.50 Cal Advanced Propellants

Presented at the NDIA on May 25, 2011

By

St. Marks Powder (SMP), GD-OTS

.50 Cal Advanced Propellant Presentation

- .50 Cal Propellant Development Approach
- .50 Cal Ammunition Applications and their propulsion needs
 - Increased Performance (High velocity, KE, increased range)
 - Limited Range Training Ammunition (LRTA)
 - Green .50 Cal (Environmentally friendly)
 - Plastic Case (Light Weight)
 - Armor Piercing (SLAP)
- St. Marks's Propellant Solutions and Results

.50 Cal Propellant Development

- Propellants are designed using interior ballistic models.
 - Gun Parameters: Cham. Vol., caliber, projectile mass & design
 - Burn Speed is controlled with particle size, chemistry, web
 - Optimal performance requires maximum loading energy, controlled burn to Pmax, and 100% Propellant Burnout
- Propellant samples are fabricated in the pilot plant
- Propellant samples are tested in ballistic EPVAT systems
- The modeling, fabrication, and testing process is repeated and refined

50 Cal Interior Ballistic Modelling Simulations

.50 Cal Propellant Development

- Other performance characteristic are considered
 - Barrel wear life (Propellant Flame Temperature)
 - Muzzle Flash (Low Flame Temperature, Flash reducing additives)
 - Temperature Sensitivity
 - Decoppering Agent to prevent barrel coppering
 - Propellant metering to control charge weight

.50 Cal High Performance

- ➤ How much additional performance is possible in .50 Cal M33?
 - The standard .50 Cal M33 performance is based on 50 year old requirements
 - Higher energy propellant technology has since been developed
 - Standard .50 Cal M33 has excess case capacity
- SMP's Propellant Solution
 - Take advantage of excess case capacity to maximize propellant charge weight
 - Use a High Energy BALL POWDER® Propellant design (WC869) and optimize the burn speed to maximize ballistics
 - This gives substantial increase in Kinetic Energy without sacrificing barrel wear

.50 Cal High Performance

WC869 vs WC860(Standard)

.50 Cal M33(650 grain) @55,000psi (380 Mpa)

Powder	Barrel	Charge	Velocity	K.E.
WC860	36"	235 grains	2905 ft/s (885 m/s)	12,175 lbf-ft (16.5 KJ)
WC869	36"	265 grains	3085 ft/s (940 m/s)	13,730 lbf-ft (18.6 KJ)
Delta			+180 ft/s (55 m/s)	1,555 lbf-ft (2.1 KJ)
WC860	45"	235 grains	2980 ft/s (908 m/s)	12,811 lbf-ft (17.4 KJ)
WC869	45"	265 grains	3175 ft/s (968 m/s)	14,543 lbf-ft (19.7 KJ)
Delta			+195 ft/s (59 m/s)	1,732 lbf-ft (2.3 KJ)

Kinetic Energy ~13% Greater at muzzle

.50 Cal High Performance

WC869 vs WC860(Standard)
.50 Cal M33(650 grain, B.C. 0.707) 45" Barrel @55,000psi (380 Mpa)

Powder	@muzzle	@500m	@1000m	@1500m
WC860	908 m/s (17.4 KJ)	730 m/s (13.6 KJ)	544 m/s (7.6 KJ)	358 m/s (3.3 KJ)
WC869	968 m/s (19.7 KJ)	795 m/s (16.1 Kj)	609 m/s (9.5 KJ)	423 m/s (4.6 KJ)
Delta KE	13%	18%	25%	39%

.50 Cal LRTA (Limited Range Training Ammunition)

- .50 Cal LRTA (Limited Range Training Ammunition)
 - Trajectory matches standard .50 Cal M33 to 800 meters
 - Projectile is designed to go unstable after 800 meters
 - 50% shorter range for reduced safety template
 - Reduced range maintenance
- .50 Cal LRTA propulsion challenges
 - The LRTA projectile sits further into the case reducing case capacity and propellant charge
- SMP's Propellant Solution
 - Design the propellant with a higher bulk density to compensate for reduced case capacity and adjust the burn speed

0.50 CALIBER (12.7MM) LRTA BALL AND TRACER

50 Cal LRTA (Limited Range Training Ammunition)

WC860 @ 245 grains in 50 Cal LRTA

Tested in .50 Cal Barrel (45")

+70F 895 m/s(2936 ft/s) 350 MPa(50,750 psi)

+125F 923 m/s (3028 ft/s) 380 MPa (55,100 psi)

-40F 840 m/s (2755 ft/s) 322 MPa (46,690 psi)

Note: Ballistics meet MOPI requirements

.50 Cal Lead Free Projectile

- GD-Canada's .50 Cal Ball C162
 - The C162 cartridge meets NATO's STANAG .50 Cal (12.7mm) requirements
 - The C162 projectile contains a soft steel core with a gilding metal Jacket
 - The C162 projectile contains no heavy metals
- .50 Cal Green propulsion challenges
 - The C162 challenge is that the absence of lead from the projectile base removes the lead decoppering properties
 - The C162 projectile is heavier than the M33 (700 vs. 650 grains)
- SMP's Propellant Solution
 - A propellant decoppering agent is required to properly decopper the barrel and compensate for the lead free projectile

.50 Cal Lead Free Projectile

.50 Cal Lead Free Projectile

WC862 @ 245 grains in 50 Cal C162

Tested in .50 Cal Barrel (45")

+70F 895 m/s(2936 ft/s) 340 MPa(49, 300 psi)

+125F 931 m/s (3054 ft/s) 380 MPa (55,100 psi)

-65F 844 m/s (2769 ft/s) 310 MPa (44,950 psi)

Note: Ballistics meet MOPI requirements

.50 Cal Plastic Case

- .50 Cal Plastic Case
 - Offers ~20% weight reduction per rounds w/M33 projectile
- .50 Cal Plastic Case Propulsion Challenges
 - Has a ~15% reduced Chamber volume due to the plastic case
 - Must meet standard .50 Cal M33 Performance
- SMP's Propellant Solution
 - Tailor a High Energy BALL POWDER® Propellant (WC869) design to meet standard .50 Cal/M33 performance at a lower propellant charge weight
 - Design the High Energy BALL POWDER® Propellant to have maximum bulk density to maximize charge weight
 - Flat velocities across temperature range

Ordnance and Tactical Systems

.50 Cal Plastic Case

WC869 @ 220 grains in .50 Cal Plastic Cases and M33 Proj. Tested in .50 Cal Match Barrel (36")

+70F 2903 ft/s (885 m/s) 56,533 psi (390 Mpa)

+125F 2860 ft/s (871 m/s) 51,916 psi (358 Mpa)

-40F 2883 ft/s (879 m/s) 57,756 psi (398 Mpa)

Note: Standard .50 Cal M33 Performance

in Match Barrel: 2905 ft/s (885 m/s) 56,000 psi (385 Mpa)

.50 Cal SLAP (Sabot Light Armor Penetrator)

- .50 Cal Slap
 - Defeats lightly armored vehicles from greater ranges then standard .50 Cal AP ammunition
 - Sabot round reaches velocities of 4,000 ft/s
 - Penetrates 3/4" Armor Plate at 1500 meters
- .50 Cal Slap Propulsion Challenges/Opportunities
 - High velocity performance required
 - The .50 Sabot round intrudes into the case less, ~18% increased case capacity compared to M33
- SMP's Propulsion Solution
 - Requires a tailored BALL POWDER® Propellant which fills the case yet meets pressure requirements and burns out completely.

Caliber 50 SLAP (M903)

.50 Cal SLAP (Sabot Light Armor Penetrator)

WC856 @ 245 grains in .50 Cal C162

Tested in .50 Cal Barrel (45")

Ammo	Powder	Charge	Velocity	Mouth Press
Slap	WC856	@~285 grains	4000 ft/s	51,000 CUP

Note: .50 Cal M33 propellant charge ~240 grains

.50 Cal Advanced Propellants Summary

- Summary
 - St. Marks Powder has the ability to develop BALL POWDER® Propellant solutions for various .50 Cal applications
 - This presentation covers a cross section of our technology. It has been applied to many other .50 Cal applications around the world, such as the Mk263 round
 - The St. Marks Technology allows for enhanced velocities, at flat temperature profiles, with low flame temperature for reduced barrel and low muzzle signature
 - These propellants are designed to meter well for consistent loading

