Battelle
The Business of Innovation

Solid Propellant Propulsion System for Low-Velocity, Non-Lethal Projectiles with High Initial Thrust for Spin Stabilization from Fast-Twist Rifling

Authors:
Jeffrey Widder
Christopher Perhala
James Rascoe

Outline

- 1) Objectives
- 2) Approach
- 3) Technical Challenges
- 4) Solutions
- 5) Test results
- 6) Conceptual design for weapon mounted system
- 7) Wrap Up

Objectives

Develop a Non-Lethal Systems That is:

- 1) Accurate
 - 10 shot mean radius < 10 cm at range
- 2) Logistically similar to conventional small arms
 - stockage and supply of ammunition and magazines
- 3) Light-weight and small
 - add minimal load to the Warfighter
- 4) Easy for Warfighter integration
 - modular component of individual weapon platform

Approach

- Addressed accuracy by the use of a tight fitting projectile and a fast twist rifled barrel
- Addressed logistical burden by
 - self contained munition
 - reduced weight/size
- Addressed weight/size
 - low pressure in barrel
 - composite construction with thin steel insert for wear resistance
 - short barrel with fixed and open breech operation
- Addressed Warfighter integration
 - attachment for Picatinny rail

Technical Solution: Munition

To meet accuracy, logistics, size, and weight requirements a novel munition must be developed

- Lightweight low velocity projectile
- Consistent interior ballistics with small propellant charges
- High thrust to engrave rifling and overcome angular moment
- Caseless to simplify launcher design
- Low barrel pressure

Technical Challenges

Non-lethal ballistics are large in diameter and low in energy

small propellant charges are used resulting in poor interior ballistics

Present Solution

- High-Low system
 - improved interior ballistics
 - large ullage
 - cartridge case

Battelle Solution

- Variable Volume Combustion Chamber
- Caseless design

High-Low compared to Variable Volume

excessive pressure prevented by work done on projectile

low ullage

Variable Volume Combustion Chamber

- Small initial volume and low ullage
- Combustion chamber volume increases throughout burn cycle
- Work performed on projectile as propellant burns
- Thrust is maintained during engraving
- Pressure in the barrel is minimal

Sub Caliber

Make combustion chamber sub caliber

- High internal pressure
- Low force over sub-caliber area appropriate for non-lethal ballistics

Thrust maintained during engraving

expanding sub caliber combustion chamber

Results: 10 Shot Groups at 27 Meters

All Pictures Show 15 X 23 cm area of Target

Battelle The Business of Innovation

Results of Velocity & Dispersion for 10 Shots, Identically Loaded Ammunition

	23 to 30 cm in front of muzzle							
	5.1 cm barrel	10.2 cm barrel	20.4 cm barrel	28.0 cm barrel	45.7 cm barrel	Rem. 700 42 cm barrel		
# of Recorded Vel.	10	10	9	7	7	10		
Ave. Vel. (m/sec)	112	110	102	92	92	125		
Sigma Vel. (m/sec)	2.7	2.4	4.5	4.8	3.9	3.9		

Mean Radius (cm) 27 meter Range, 10 Shots									
5.6	3.3	3.0	3.6	2.8	< 1.9				
Mean Radius (inches) 27 meter Range, 10 Shots									
2.2	1.3	1.2	1.4	1.1	<0.75				

Measuring Velocity Near the Muzzle and Dispersion at 27 Meters

Conceptual Rail Mounted Launcher

- Barrel does not have to contain pressurized propellant gas allowing for a fixed and open breech launcher
- Projectiles fire directly from top of magazine into rifled barrel
- Next round advances into battery by the action of the magazine
- Barrel can be very short because all the thrust occurs in less than 2 cm of projectile travel & accuracy has been demonstrated

1 2

Wrap Up

Battelle developed non-lethal system

- Accurate
- Logistically similar to conventional small arms
- ✓ Light-weight and small
- Easy for Warfighter integration

Up Coming Demonstration

Plan to Demonstrate at ARDEC's ATF Range June 2011

- Hardware
- Technical information
- Live fire demonstration

Contact Information

Jeffrey Widder Senior Research Scientist

Battelle Eastern Science & Technology Center 1204 Technology Drive Aberdeen, MD 21001

> widderj@battelle.org 410-306-8611