

40mm High Explosive Multi-Mode (HEMM) Grenade Concepts

NDIA Small Arms Conference

25 MAY 2011

Michael L. Fisher, Richard W. Givens, John R. Leach, Christopher A. Perhala,* and Ivan E. Tornes

Energetic Systems & Security Technology

Battelle

505 King Avenue, Columbus, OH 43201

Acknowledgement

Work supported by
RDAR-EIJ
Army Research and Development Engineering Center (ARDEC)
Picatinny, New Jersey
under
USG contract W15QKN-09-C-0105

Briefing Objective

- Project Overview
 - Background
 - Scope
 - Objectives
 - Approach
 - Results

Background & Scope

Background

There is a need to more effectively defeat enemies in defilade

 The lethality of grenades can be increased by launching more, most, or all fragments in a preferred direction – at the target

Scope

- Phase I was an iterative design and modeling effort
 - Establish baseline performance of working munitions
 - Compare effectiveness of 40mm directed fragmentation munition concepts

Technical Approach

- Requirements & Constraints Development
 - Establish applicable performance requirements: start with the effects on target and work backwards
- Preliminary Concept Development
 - Two design teams
 - Iterative concept development & analyses
- Fuzing Design Development
- Preliminary Design Verification
 - Limited detail of modeling & analyses
- Further Concept Development
 - Refine definition of subsystems & components
- Performance Verification of Concepts
 - Verify design in virtual environment

Functional Analysis

- Eight fundamental functions are basis of concepts
 - Initialize Fuze Logic Circuit
 - Transfer Targeting Data
 - Arm Fuze
 - Sense Target
 - Function Fuze
 - Lethality Enhancement Method
 - Launch Fragments
 - Penetrate/Kill Target

Fuze-related functions

Function Methods

Lethality Enhancement Methods

Time or Orientation

Control time or orientation at which selected portions of munition detonate

Reconfigure Munition

 Statically or dynamically rearrange munition configuration so most or all of fragments are projected in a preferred direction

Submunitions

Deploy then detonate submunition(s) at appropriate times

Redistribute Mass of Baseline Munition

Redistribute mass of baseline munition to increase number of radial fragments

Mixed Fragment Masses/Types

- Large number of small fragments
- Limited number of massive fragments (more penetrating capability)
 - Preformed, controlled (scoring/notching), EFPs

Operational Modes

- Directed fragmentation
 - Shooter designates direction of fragments

- Burst on contact
- Airburst
- Anti-armor mode

Initial Concepts (1 of 2)

 Sequential Segment Detonation

Initial Concepts (2 of 2)

Counter-rotating Detonation Wave

EFI-Based Fuzing

All of the 40mm DFM concepts use EFIbased electronic firing set for multifunctionality, timing precision, and safety

Initiator	Current	Voltage	Energy	Power	Time	Remarks
Hot Wire	1A	20V	0.2 J	1 W	1 ms	Initiator to sensitive primary to sensitive secondary explosive
EFI	2000A	1000V	0.2 J	3 MW	1µs	Initiator to insensitive secondary explosive

Basic EFI Configuration

Exploding Foil Initiator (EFI)

Fabricated EFI of Various Sizes and Types

Battelle fabricated EFIs

Deployment Charge COTS Item

SEA Smart Thruster

SEA Printed Circuit Board Sizing

Fuze Packaging Concept

Summary

40mm High-Explosive Multi-Mode Grenades are Feasible

- Greater lethality
 - In anti-personnel mode: most fragments can be directed at targets in defilade
 - In anti-armor mode: standoff can be increased to optimize shaped charge penetration
- Substantially more reliable performance
 - Ensured through the use of an electronic S&A subsystem
- Lower development costs
 - COTS or COTS-adaptable electronics avoid substantial development time and cost
- Retention of legacy capabilities
 - Multi-mode grenades can be employed the same as current grenades
- Design growth potential
 - Inherent programmability can adapt to emerging needs
 - Tactics can be evolved to take advantage of additional modes of operation

Contact Information

Christopher A Perhala, PE Principal Research Engineer

> Battelle 505 King Avenue Columbus, OH 43201

perhalac@battelle.org 614-424-7789