# THALES















# Improving In-Service Small Arms Systems – An Australian Experience

# Mr Collin Galvin – Chief Engineer Armaments Australian DoD

- ▶ All engineering for Australian Defence Forces Small Arms up to 40mm and the Javelin Missile System.
- Graham Evenden Soldier Systems Development Manager:
  - ▶ Thales Australia:
    - ▶ Employs circa 6,500 people.
    - ▶ OEM for Small Arms & Ammunition.
  - Small Arms Test & Evaluation.
  - ▶ Soldier Systems Business Development.

- Increasing demands on Defence whilst under increasing budget pressures
- Multi national operations resulting in a need for enhanced interoperability
- Higher tempo of operations resulting in a need for increasing reliability
- No off the shelf technologically advanced solutions available providing a step capability improvement
- All of these factors has resulted in the need to do more with current systems

### Smarter. Safer. Areas of Best INTEROPERABILITY of 5.56mm Ammo



- Interoperability
- Australian 5.56mm ammunition Natures (F1, F1A1) and US M855 ammunition types.
- Reliability
- ▶ The improved Australian 5.56mm assault rifle (AUF88SA2) what and why.
- The Immediate Future (considering Technology)
- ▶ The Future Australian assault rifle EF88 and Project Land 125 Phase 3C.



Propellant designated as AR2210V01

increased port pressure, while maintaining AR2210's excellent BTI

Current F1 Cartridge components/parts optimised to meet interoperability requirements and improve performance.

Trajectory match with NATO reference, improved port pressure for optimisation in the M4 with no deterioration in performance in the F88



- Operational feedback from deployed soldiers provided the catalyst for detailed analysis of the rifle design
- Primary observation raised was failure to fully lock with a full magazine after manual cocking

A joint investigation between Australian Government and Thales "lets make things better now!"



- The F88SA2 satisfied the original specification ARMY(AUST)6443 mid 1980s.
- The user expects more now particularly on operations.
- Initially Australian DoD began investigations.
- As Thales built up their international Small Arms design and T&E capability the lead for the investigation and as a result design improvements responsibility was transferred to the design authority with overview by the DoD
- The Australian Soldier Modernisation Programme Land 125 Phase 3C, challenges are:
  - ▶ MRBS Requirement increased from 1:500 to 1:2,500
  - ► MRBF Requirement increased to 1:6000 Baseline and 1:10,000 desirable.
- Thales able to lever new capabilities quickly to make significant enhancements to the SA2 system now in service.

# Photron FASTCAM-APX RS m... 6000 fps 1/9000 sec 512 x 256 Start frame: 7234 +00:00:01.205500 Date: 2010/3/10 Time: 13:49 SA2 SLIDE























#### BUTT:

- · Additional gauging
- Revised welding and scraping process.

Reduced erroneous friction on slide.

#### **GUNLOCK:**

- Data pack tolerances of key features tightened
- · Bolt face chamfer increased
- · Additional gauging.

Quantity and consequence of clash decreased.

#### EJECTION PORT COVER

- · Using a new design
- Less likely to bend and interfere with slide

Reduced erroneous friction on slide

#### HAMMER MECHANISM:

- Hammer spring redesigned improved for manufacturability
- Move back to carbon steel to eliminate the gauling. potential for stainless steel

More consistent hammer operation through extended life

# FORCE OF SPRING LOCK LONG:

- Raw material used is at higher end of spec
- Return to raw (uncoated) spring.

Spring consistently produces required force through extended life.

# Austeyr F88SA2 Test & Evaluation – An Overview

## Acceptance Endurance and Environmental Testing

- 4 randomly selected weapons each fired 6,000 rounds
- 2 stoppages
- All component wear characteristics measured.
- To be extended to 12,000 rounds.
- This will help inform a usage based Maintenance Program currently being investigated the DoD



### **Austeyr F88SA2 Test & Evaluation – An Overview**

In addition to normal testing the following AQL Sample Acceptance Testing occurs:

- 150 round function tests zero stoppages.
- Slide velocity criteria for opening and closing zero failures.
- Over 700,000 rounds fired in F88SA2 programme so far.



# A weapon that surpasses the demanding reliability requirements set by the Australian Defence Force for the next generation – <u>today!</u>



| ٦ | $\overline{}$ |
|---|---------------|
| 7 | $\overline{}$ |
| ( | $\supset$     |
| ( | Ń.            |
|   | Φ             |
|   | ⊏             |
|   | $\neg$        |
| • | $\neg$        |
|   |               |

| Enhancement and General Requirement Mapping |                                                       |                      |                           |        |             |                 |  |  |
|---------------------------------------------|-------------------------------------------------------|----------------------|---------------------------|--------|-------------|-----------------|--|--|
|                                             | Key User Requirements (From URD 1 – 11 September 2010 |                      |                           |        |             |                 |  |  |
| Enhancement<br>Outline                      | ><br>Adaptability<br>&<br>Modularity                  | = / +<br>Performance | < Weight +<br>Integration | Growth | Accessories | Improved<br>GLA |  |  |
| F88SA2 Reliability<br>Enhancements          | 0                                                     | 1                    | 0                         | 1      | 0           | 1               |  |  |
| Lightweight Barrel                          | 1                                                     | 1                    | 1                         | 0      | 1           | 0               |  |  |

# EF88 Design is therefore a direct consequence of User Requirements

| Enhanced Receiver                | 1 | 1 | 1 | 1 | 1 | 0 |
|----------------------------------|---|---|---|---|---|---|
| Enhanced Signature<br>Management | 0 | 1 | 0 | 1 | 1 | 0 |
| Enhanced Integrated GLA          | 1 | 1 | 1 | 1 | 1 | 1 |



(L)

**FN SCAR** 

457

No

Weight

(Kg)

4.1

3.79

3.62

3.4

3.63

3.85

3.5

- This stage will deliver a <u>tested and production ready</u>
   EF88 rifle.
- Key dates are:
  - Commenced Apr 2011.
- Design and Testing activities complete and data ready for Government approval in Dec 2012.
- Ready to manufacture in 2013
- The EF88 builds on the new F88SA2 now in service and incorporates successful technologies from the XF90 CD.
- High levels of backwards compatibility with current systems.

- The pace of current Small Arms technological advances confirms a need to extend life of current Austeyr System and its ammunition via enhancements.
- Land 159 is the next small arms replacement project for the Australian Defence planned for 2022.
- Move to F1A1 ammunition.
- Armaments Logistical Support Contract a joint Australian Defence Organisation and Thales initiative to provide a more efficient support to sustainment of ADF weapon system.

