

Outline

- Introduction
- Current Design
- Manufacturing Process of the Composition
- Magnesium Characterization
- Barium Peroxide Characterization
- Plastic Molded Projectile Characterization
- Tracer Manufacturing Process
- Conclusions

Introduction

- The main challenge is to develop a tracer in a brittle plastic molded projectile. This projectile contains some plastic, metallic powder, and a blue dye.
- Challenges:
 - Consolidation in a brittle projectile
 - Method to maintain the projectile during compression
 - Consolidation pressure cannot be very high due to its brittleness
 - Projectile with the pyrotechnic composition can cause several failures such as tracer ejection, reduction of the trace distance, etc.
 - Since the projectile is brittle, a very small tracer diameter has to be used.

Introduction

In the past:

- Encapsulated tracer (pencil tracer)
 - Zirconium and potassium perchlorate composition in a lead sheath
 - Lead sheath had to be inserted into the projectile cavity and retained by compressing the projectile wall.
 - Due to the brittleness of the projectile and the toxicity of the lead sheath, this technology was abandoned
- Traditional tracer compositions were studied using ignition and tracer compositions such as conventional tracers
 - The small diameter of the tracer cavity did not permit an efficient heat transfer from the ignition composition to the tracing composition

Current Design

- Tracer diameter is very small and the tracer length is short.
- As a result, only one composition is used in the SRTA-T ammunition which contains magnesium as a fuel, barium peroxide as an oxidizer, and calcium resinate as a binder.
 - This composition has to both ignite easily and burn slowly enough to achieve the trace distance.
- The lot-to-lot variation in the ingredients appears to be the most important factor affecting the performances of the tracer at both the ignition point and trace distance.

Current Design

- To achieve optimal performance, the Lean Design for Six Sigma method (LDFSS) was used to select the key characteristics. Tools such as process mapping, Cause and Effects matrix (C&E), Process Failure Mode and Effect Analysis (PFMEA) and Design of Experiment (DOE) were used.
- These documents were prepared for each of the following activites to identify important parameters to be tested:
 - Manufacturing process of the composition
 - Ingredient characterization
 - Manufacturing process for the tracer assembly
 - Molding process

Manufacturing process of the composition

- ▶ For the composition manufacturing process, the following characteristics were found to be important when tested in DOE for ignition or for distance trace:
 - Mixing time
 - Solid concentration of the binder
 - Drying time
- The removal of solid particles using decantation leads to a composition with a less variable density; consequently, the composition is easier to assemble especially in this small tracer cavity.
- The composition drying time was studied.

Ingredient Characterization

Magnesium

- Characteristics tested on magnesium lots:
 - Shape with SEM (Scanning Electon Microscope)
 - Grain size using Lasentec particulate analyser
 - Purity and melting point

– Conclusions:

- Magnesium choice is essential to the development of pyrotechnic composition.
- Purity of the magnesium and melting points were tested but no clear correlations were made with the trace performances.

Ingredient Characterization

Magnesium shape photos

Mg from one supplier, two different lots

Mg from one supplier, two different lots

COMPETITIVENESS... A Daily Challenge

GENERAL DYNAMICS
Ordnance and Tactical Systems-Canada

Ingredient Characterization

- Barium peroxide
 - Following are the characteristics studied for the barium peroxide :
 - Melting point, enthalpy and oxygen content.
 - Particle size
 - No significant difference was observed between the three lots tested and trace distance was still different.
 - Other tests have to be performed.

Plastic Molded Projectile Characterization

- Plastic molded frangible projectiles contain
 - plastic,
 - a powdered metal,
 - and a blue dye.
- Projectile lots have an effect on the trace performance
- Compound formulation, manufacturing process, and ingredient characteristics were studied.

Tracer Manufacturing Process

- Only a small quantity of pyrotechnic composition could be inserted in the small cavity. The pyrotechnic composition is both mechanically difficult to insert and to keep a stable quantity.
 - A variation of only 10 mg of the composition in the projectile has significant impact on the trace distance.
- For a conventional projectile and tracer compositions, the consolidation dead load is in the range of 2000 lbs. The dead load is considerably reduced in the non-conventional frangible projectile process; due to the projectile being too brittle and the pressure can cause a fracture.
 - Consequently, the maximum dead load can not exceed the fracture capacity of the projectile.

Conclusions

- Results presented demonstrate the complexity involved in the development of a tracer in plastic molded frangible projectiles. Several key characteristics were identified:
 - Tracer cavity diameter which is related to the brittleness of the projectile has to be defined at the beginning of the development.
 - Choice of the composition, in this case, only one composition is used.
 This composition has to both ignite easily and attain the trace distance.
 - Binder has to produce a homogeneous composition and be consistent in density to help in the manufacturing process.
 - Choice of ingredients and their characteristics could affect ignition of the tracer and trace distance.
 - The manufacturing processes of the projectile and the assembly of the tracer have to be consistent. A small change could cause a trace failure.

Contact Information

Nathalie Lahaie, Manager Technologies Section, D&T General Dynamics – Ordnance and Tactical systems Canada Phone: (450)582-6268

E-mail: Nathalie.Lahaie@can.gd-ots.com