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CFD Modeling in Small Arms

Internal weapon gas and particle flow
*Heat transfer
Muzzle flow including reacting flow

*Multiple projectile/particle motion, interaction and
applications

sImproved propellant burn models

eFuture Plans
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CFD Modeling in Small Arms

Internal gas flow
Mechanism actuation
eParticle flow/erosion
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RDECOM )

Internal gas flow modeling

«Simulate internal gas flow that drives operation of
weapon system

«Simulate actuation of weapon mechanisms and
estimate unlocking velocities

*Virtually measure the pressures, temperatures and flow
rates throughout the system

sEstimate relative timing of events during system
operation

sInvestigate transport of particulate matter with flow and
related particle impact based erosion

pori ube interface
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block in M249

lmfcn@ Animations of flow conditions near gas

y =
_LZ-X “—q

Velocity

Pressure

i reiease 25 mereBlGHTER FOCUSED.”

Laurie A. FIoTio= US ARMY ARDEC - DISTRIBUTION STATEWM




””Ec@ Representative data from M249 model
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RDECOM )

Particle flow in port area

sEstablish trends in
particle flow patterns
sInvestigate methods to
control particle motion

Particle matter carried with gas flow

sInvestigate erosion
effects due to particle
Impact

;‘v, Particle impact based erosion
(4
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CFD Modeling in Small Arms

Barrel/System heating
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Heat transfer for multiple rounds fired

sInvestigate heat flow patterns and temperature field as multiple
rounds are fired at various firing rates

sInvestigate effects of geometry changes

sInvestigate effect of various materials
*TWO steps

Fluid flow and heat conduction for single shot
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conduction Heat transfer coefficient data
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RDFEFCOM : :
) Heat transfer for multiple rounds fired

*Multi-shot heat conduction
Includes cartridge insertion/extraction
Includes magazine change

= Gas block
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RBDECOM

4-%4 — Temperature Contours — 30 Rounds
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*Temperature contours after 30 rounds are fired

# -Cartrldge insertion into heated barrel
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RDECOM ) . S
| ) Bore axial temperature distributions
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*Axial temperature variation — differences with firing rate decrease as
more rounds fired
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CFD Modeling in Small Arms

Muzzle
flow with
chemistry
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Muzzle flow

eUnderstand and assess muzzle device performance

(sound and flash)

sEstimate temperatures, pressures, flow field, chemical

composition

*CFD Model improvements
*Refinement of numerical methods :

*Turbulence, material properties
*Solution methods / parameters, mesh type, size, refinement

sIncorporation of chemical reactions :
«Custom multispecies real gas model and material properties
*Arrhenius based chemical kinetic model/reaction rates
\Various chemistry related solution methods and parameters
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Non-reacting muzzle flow model

;‘? Model Results — Densﬂy Gradlent
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BDFCOM _
” ) Reacting Flow Hydrogen Model

- OH Concentration

«Simplified H,
and air system
to develop
modeling
method
*Radical
concentrations/
temperature
correlate with

reaction Temperatures
*Flame |
development
and separation
«Consistent
with published
results

Good Comparison to results in : Numerical study of spontaneous ignition of pressurized
hydrogen release into air Int. J. Hydrogen Energy. Xu et.al.(2010)
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m)ﬂ,@ Gun system with reactlng flow —
muzzle geometries

OH Mass Fraction Temperature Pressure
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CFD Modeling in Small Arms

Multiple
projectile
motion
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Multiple Projectile/
RODECOM . : .
) Large Particle Simulations

Develop capability to simulate the motion of multiple

Interacting projectiles — shot gun pellet spread
*Direct simulation of coupled particle flow and high speed

Weak spring Stiff Spring

particle deformation with impact
*Application to general particle phenomenon(propellant)
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RDECOM Particle Expulsion —
Particle Count and Size Velocity Contours
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CFD Modeling in Small Arms

Propellant
combustion
and motion
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Propellant Combustion

«Current method = “Bulk effect” of combustion model
*Estimate propellant burn rate from average gas
pressure and remaining propellant surface area
*Apply consistent uniform energy, mass, momentum
sources to entire volume of gas behind the bullet.
«Sufficient for many analyses
«Can not capture local pressure effects and motion of
propellant grains particularly in the chamber.
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Propellant Combustion

*Investigate two phase simulation (solid and gas) to

model propellant combustion
«Standard two phase methods available in commercial
software not conducive to propellant burn conditions
*Requires low particle packing density
*Does not track particle motion/changing particle size
*Applicable to limited solver and material properties
*Develop alternative method using direct particle
modeling method described earlier with changing particle
size and consistent mass, momentum, energy sources
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Propellant Combustion

*Propellant burn simulation with moving particles
Interaction between particles and particles and walls
*Changing size of particles to account for propellant

,,,,,,,

particle - based on burn rate and surface area of particle
Moving wall

Pressure field contours
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Refined Propellant Combustion

Model Development

Laurie A. Florio— US ARMY ARDEC - DISTRIBUTION STATEMENT A Approved for public release 25 May 2011

More realistic propellant grain shape
*Modification of collision detection and collision model

2 — particle collisions 5 — particle collisions

*Modification of method to simulate change in particle size
and in method to assign the mass, momentum, and energy
sources

5 — particle collision with burn model



Refined Propellant Combustion

Model Development

More realistic propellant grain shape in more realistic

system
Includes “primer,” moving bullet base, cartridge with

propellant grains




Further work

Inclusion of chemistry in propellant burn
Inclusion of particles/particle burn in muzzle flow
«Simulation of deforming or shape changing particles

Inclusion of contact between general system components
during weapon operation

*Coupling of fluid and stress analysis
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Conclusions

*CFD is a tool to gain further insight into the phenomenon related
to the operation of weapon systems
*Greater model complexity, better results, greater
computational expense
*High speed compressible turbulent gas flow conditions highly
dependent on material property and turbulence models
sIncreased round count, lower temperature gradients, reduced
differences in temperature field distributions with firing rate
*High temperatures as fluid comes to rest on solid surfaces
Increases likelihood of chemical reactions nearby
*Particle motion and fluid flow are highly coupled
*For metal particles, particle deformations upon high speed
collisions need to be modeled
*Changing size and shape of particles influences particle

ymotion and the flow
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