
1 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

The Agile Process

Jeffery Payne

CEO, Coveros, Inc.
jeff.payne@coveros.com

2 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Agenda

 Introductions & Expectations

 What is Agile?

 Why does Agile work?

 Myths about Agile

 Agile development process

 Wrap Up

3 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

 Coveros helps organizations accelerate the delivery of secure, reliable
software

 Our consulting services:
– Agile software development

– Application security

– Software quality assurance

– Software process improvement

 Our key markets:
– Financial services

– Healthcare

– Defense

– National security

About Coveros

Corporate Partners

4 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Introductions

Instructor – Jeffery Payne

Jeffery Payne is CEO and founder of Coveros, Inc., a software company that helps
organizations accelerate the delivery of secure, reliable software. Coveros uses agile
development methods and a proven software assurance framework to build security and
quality into software from the ground up. Prior to founding Coveros, Jeffery was Chairman
of the Board, CEO, and co-founder of Cigital, Inc. Under his direction, Cigital became a
leader in software security and software quality solutions, helping clients mitigate the risk of
software failure. Jeffery is a recognized software expert and popular speaker at both
business and technology conferences on a variety of software quality, security, and agile
development topics. He has also testified before Congress on issues of national
importance, including intellectual property rights, cyber-terrorism, Software research
funding, and software quality.

Class Attendees

5 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Expectations

 What are your expectations for this class?

 What do you wish to learn?

 What questions do you want answered?

6 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Objectives

The primary objectives of this course are to:

 Introduce you to Agile software development

 Discuss the major differences between Agile and traditional
methodologies.

 Describe how Agile practices and principles improve the
software development process.

7 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

What is Agile?

8 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

The agile movement began as a set of ideas for

improving software development

 Close collaboration
between programmers &
business people

 Face-to-face
communication

 Frequent delivery of
deployable business value

 Self-organizing teams

 Crafting code &
environment to support
requirements changes

 The most important output
of a project is working
software

Adaptive Software

Development

Extreme

Programming (XP)

Lean Software

Development Feature Driven

Development
SCRUM

DSDM
Crystal

Clear

http://www.agilemanifesto.org

AGILE

What is Agile?

9 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Different agile methodologies emphasize different practices

Scrum

• Product Backlog

• Sprint Backlog

•Daily Scrum

• Sprint Review

• Self-Directed Teams

•Chickens and Pigs

Lean

• Seeing waste

•Value stream mapping

• Set-based development

• Pull systems

•Queuing theory

•Motivation

•Measurements

XP

• Test-Driven Development

• Refactoring

• Simple Design

• Pair Programming

•Collective Ownership

•Coding Standard

• Sustainable Pace

•Metaphor

•Continuous Integration

• The Planning Game

• Small Releases

•On-Site Customer

DSDM

• Timeboxing

•Meta Modeling

•MoSCoW Method

Crystal

• Reflective Improvement

•Osmotic Communication

• Easy Access to Expert

Users

What is Agile?

10 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

All agile methodologies adhere to some basic principles

 Early and continuous delivery of valuable
software

 Welcome changing requirements, even
late in development

 Deliver working software frequently

 Business people and developers work
together daily

 Build projects around motivated
individuals and trust them to get the job
done.

 Frequent conversation to convey
information efficiently

 Working software as the primary
measure of progress

 Sustainable development

 Continuous attention to technical
excellence and good design

 Simplicity—maximizing the amount of
work not done

 The best architectures, requirements,
and designs emerge from self-organizing
teams

 At regular intervals, the team reflects on,
tunes, and adjusts its behavior

What is Agile?

11 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

The agile approach is a different way of thinking about SW

projects

Learning Driven

Continuous Client Communication

Deliver in Short, Business-Focused

Releases, Typically 2 – 3 Months

Develop in 2-Week Long Sprints and Deliver

Working Code

Develop in End-to-End Functional Slices

View Programming as Design

Continuously Integrate Code Throughout

(Hourly Builds)‏

Fully-Automated, Continuous Testing at

 Both Functional and Unit Level

Low Cost of Change

Plan Driven

Infrequent Client Communication

Deliver Once in “Big Bang” Fashion,

Typically 9 – 12 Months

Develop in Distinct Phases with

Interim Paper Deliverables

Develop in Layers: Presentation,

Persistence, Business, etc.

View Programming as Construction

Integration of Different Layers Occurs

at End of Build Phase

Testing as Separate Phase at End of Project,

Typically Emphasizing Functional Level

High Cost of Change

Phase-Based Agile

What is Agile?

12 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Agile Rearranges Key Development Activities

Phase-Based approach

Planning &

Requirements

Analysis / Design

Implementation

Test

Deployment

Incremental/Agile approach

What is Agile?

Note: Agile is not simply a set of ―small waterfalls‖

13 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Why Projects Fail: Cost of change

Why Agile?

14 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Why Projects Fail: Poor requirements management

Standish Group study on

“Features and Functions used

in a Typical System”

Much of present-day software acquisition

procedures rests upon the assumption that

one can specify a satisfactory system in

advance. . . . I think this assumption is

fundamentally wrong, and that many

software acquisition problems spring from

that fallacy. --Fred Brooks, 1986

Why Agile?

15 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Addressing these Issues with Agile Planning

Fix: Scope

Time Resources

Time Resources

Scope

Traditional Approach Agile Approach

Estimate & Adjust:

Why Agile?

16 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

THE AGILE BET

If the cost of change can be kept low over time, the cost
savings that result from early feedback will far

outweigh the added costs of early change.

 Deliver incremental change in order to maximize feedback.

 Accept change continuously in order to minimize waste.

Why Agile?

Addressing these Issues with Agile Software Delivery

17 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Myths about Agile

 There are many myths floating around about Agile Development

 These myths are often due to:

– A lack of understanding of Agile

– Early thinking within the Agile community that proved to be wrong

– Trying to implement Agile in a manner that will not work

– Relying upon consultants who know the theory but can‘t apply it
pragmatically

 Regardless, Agile is not a silver bullet that will magically transform your
organization without a lot of hard work

18 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

No planning takes place on Agile projects

 Reality:

– Agile teams spend as much, if not more, time planning development

activities.

– The major difference is that the planning is spread throughout the entire

lifecycle of the project.

– Traditional methodologies emphasize lots of upfront planning. Agile teams

do some planning upfront, but only enough to understand the major

milestones and dependencies.

– Agile is designed to embrace change and uncertainty, so most planning is

done in a continuous, ‗just-in-time‘ fashion.

 Planning Pragmatics
– Define your wish list / vision up front
– Define an initial, high level architecture up front
– Wireframe your user interface look and feel
– Detail out 1-2 Sprints of work
– Detail out additional Sprints prior to the start

Agile Myths

19 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

No documentation is written on Agile projects

 Reality:

– Agile emphasizes working software over comprehensive documentation

– Agile encourages the ―right‖ amount of documentation, that is, documents that

are of value to the project and downstream maintenance

– The creation of a document is treated as a requirement, which in turn must be

estimated. This forces the team to carefully consider the costs of

documentation and focus only on the development of concise, valuable

documentation.

 Documentation Pragmatics

– Document as necessary for communications

– Document as necessary for support and maintenance

– Document as necessary for corporate policy and/or regulatory compliance

Agile Myths

20 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Software testers aren‘t needed on Agile projects

 Reality:

– In Agile development, just like in traditional methods, the development and test

team share responsibility for code quality.

– More frequent code deployment to the test environment requires enhanced

methods to ensure quality, such as test automation and functional test suites.

– These activities require a skilled and capable test team to execute

successfully.

– Agile does rely on more automated testing and testing inline with development

vs. post development so testers do test in a different way

 Testing Pragmatics

– Unit testing by development is a necessity

– A test automation strategy should be used to dictate where the ROI point is for
automation

– Automated testing is integrated with continuous integration to support rapid
build, test, fix cycles

– Full integration and system testing is done mostly prior to release

Agile Myths

21 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Agile Product Development Process

• Incremental product delivery process that encompasses all aspects of the organization

•Team-oriented with day-to-day interactions between all functions

Initial Planning On-going Planning, Implementation & Release

22 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Continuous Integration

Coding Standards

Collective Code Ownership

Continuous Acceptance Testing

Timeboxed Sprints

Short Release Cycles

Continuous Planning

Story-Based Development

Pair Programming

Incremental Design

Refactoring

Test Driven Development

ROI

Quality

Visibility

Alignment

Flexibility

Responsiveness

Automated Builds

Automated Unit Tests

Automated Regression Testing

BENEFITS

MANAGEMENT PRACTICES

AUTOMATION

DEVELOPMENT

 TEAM PRACTICES

Agile Best Practices

23 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Agile Planning Process

Sales

Engineering

Market

Product

Strategy

Customer

Feedback

Product

wish list
Hi-Level

Requirements

Order of

Magnitude

Estimate

Relative

Priority

Global

Backlog

(Stories)

Initial Release Planning (common artifacts below)

Initial

Architecture

UI Wire

Frames

Detailed

User Stories

Release

Plan

Iterative Planning

(during Sprints)

• Review output from

 User Acceptance

 Tests (UATs)

• Review changes in

 priority

• Update stores for

 next Sprint

• Update release plan

Test

Strategy

24 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Roles of Core Planning Team Members

 Business Stakeholder(s) – Own the product vision and helps make sure the
requirements meet the needs of the end customer

 Project Manager – Responsible for the end-to-end planning process

 Lead Architect – Responsible for the initial architecture and scoping

 Lead Business Analyst – Acts as SME and documents requirements

 QA Lead – Responsible for overall test strategy

 Web Designer – Optional depending upon whether UI prototyping is involved

Others participate in the process as required and necessary

Initial Release Planning

25 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Creating a Product Wish List

 A ‗Wish List‘ is a list of all possible features & functions that
a particular product might encompass over time

 Inputs into the Wish List should come from everywhere
within and outside of the organization that has a stake in the
product

 Organization‘s often encompass a Wish List within a
Product Vision document

 Product management typically owns the Wish List

26 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Creating a Global Backlog

 A Global Backlog encompasses all items from the Wish List
that Product Management deems the highest priority for
inclusion in upcoming releases.

 Backlog items are prioritized and assigned an Order of
Magnitude (OOM) estimate

 OOM can be used for budgeting purposes BUT ONLY IF
THE TOP END VARIANCE ESTIMATE IS USED

 A Global Backlog contains User Stories

27 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

User Stories

 A story represents some small slice of visible, usable
functionality—typically something a user can do with the
system

 A well-written story possesses the following characteristics:
– Understandable

– Testable

– Valuable to the customer

– Independent of each other

– Small enough to build a handful each Sprint

 Stories are written during initial planning or during a Sprint
planning meeting once the project has begun.

 Although the idea for a story will most likely originate from
the business stakeholders, many team members may have
a hand in authoring the story card, including project
managers, tech leads, analysts, and testers.

Creating a Global Backlog

28 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Stories
• View one-way flights

• View round trip flights

• View multi-stop flights

• Add travel specifics (e.g.,

number of flyers, children,

• Search for flight by flight

number

• Search for flight by airline

• Search for flight by

schedule

Use Cases

• View Available Flights

• Price flights alternatives

• Reserve/hold flights

• Record frequent flyer information

• Purchase tickets

Transforming Feature Sets into User Stories

Feature Sets
Establish business travel

site to compete with

Orbitz & Travelocity

supporting planning:

• Airline

• Hotel

• Rental car

Creating a Global Backlog

Themes

29 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Initial Release Planning

 Planning within Agile is iterative

 Regardless, some planning must be done up front for a
variety of reasons:

– Build a release plan the organization can plan around

– Resolve upfront architectural tradeoffs so implementation conforms
to an overall architectural vision

– Prototype / wireframe a UI to get early feedback from stakeholders
on the requirements

– Prepare development & testing platforms accordingly

 Detail out initial Sprint(s) and projected releases for more
detailed budgeting purposes

30 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Am I Ready to Begin?

 Is there a clear understanding of the reasons that the desired software
is being developed?

 Is there an understanding of constraints under which the delivery team
will have to work?

 Do the product owners have a clear vision of the desired software down
to the theme or module level?

 Are the product owners and/or stakeholders identified and given full
authority to make decisions on the tactical direction of the software to be
developed?

 Are dependencies on people, processes or systems well understood?

Initial Release Planning

31 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Detailed User Stories

Initial Release Planning

Filter campaign list by analyst name

3 UC55

High

Traceability
Points

(LOE)

Priority

Story

Description

32 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Helpful tips for user stories

1. Think in terms of inputs & outputs

– What data does a person/system put in?

– What data comes out?

– How will we test this?

2. Think in terms of vertical slices

– What is a minimal version of the desired functionality?

– Can you exercise multiple layers of the system?

– Be careful with ―user views …‖ stories

3. Don‘t worry too much about getting it right

– It‘s OK to rip up a card and start over

– You will get many chances to look at a story

33 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Example User Stories

 Which are good stories and which are not so good?
______ User can use webmail.

______ User views a message list with no messages.

______ User views all their messages.

______ System uses Log4J to log all error messages.

______ Graphing and charting shall be done using Business Objects.

______ User configures the number of messages displayed on the page.

______ User exports their resume to Microsoft Word.

______ Develop the persistence framework.

______ Develop the resume view JSP.

X

X
X

X
X

34 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Story Estimation using Points

 A point is a unit of measurement that is used to
communicate the level of effort of a user story.

 A point is equal to one day of development/test time for a
single developer/tester

 As every developer is different (level of experience, skill set,
etc.), you must assign points based upon the ―average‖
throughput of your team

 Velocity is the total points that can be complete in one
Sprint

Initial Release Planning

35 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Determine Velocity for Sprints

1. Determine the Maximum Velocity (MV)
 MV = (Sprint duration – 2) x number of developers

 Sprints are reduced by two days to account for Kickoff and UAT

2. Determine the Realistic Maximum Velocity (RMV)
 RMV = MV * velocity multiple

 Velocity multiple accounts for hours spent on overhead, reviews,
vacation plans, all-hands, staff meetings, etc.

 Velocity multiple is typically between .5 and .8 depending upon the
organization

 Determine Velocity for Sprints
 Assume a ramp-up as teams get acclimated

 Typically use 50% of RMV for first Sprint Velocity, 75% of RMV for
second Sprint Velocity, and 100% of RMV for all remaining Sprints

36 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Velocity Calculation Example

 Assumptions
– Two week Sprints

– 4 Developers

– High overhead organization

 Maximum Velocity = (10 – 2) x 4 = 32 Points

 Realistic Maximum Velocity = 32 x .5 = 16 Points

 Sprint Velocity
– 1st Sprint = 16 x 0.5 = 8 Points

– 2nd Sprint = 16 x .75 = 12 Points

– 3rd Sprint = 16 x 1.0 = 16 Points

37 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Building a Release Plan

 Release plans that include Sprints* are built using:
– Prioritized stories that include Points estimates
– Team size
– A decision around Sprint duration
– A decision around how much functionality is enough to justify a release

 Sprint duration
– Tradeoff between cost of change and organization‘s agility
– Typically 2 – 4 weeks in duration

 Release decision
– Tradeoff between cost of deployment/release and market dynamics
– Releases vary from daily to 3 months (huge variation!)
– Releases are now a business decision

*A Sprint is a development iteration in SCRUM terminology

38 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Sprint 302 Sprint 303 Sprint 304

SAS

D&B

CRM

ADM

G3

BIC

Story

“Backlog”

SAS BIC ADM G3 D&B CRM

System accepts more than 5

c/c for an order.

1

System accepts more than 5

c/c for an order.

1

System accepts more than 5

c/c for an order.

1

System accepts more than 5

c/c for an order.

1

System accepts more than 5

c/c for an order.

1

System accepts more than 5

c/c for an order.

1

System accepts more than 5

c/c for an order.

1

Ledger checks adjustment file

for duplicates

1

Ledger checks adjustment file

for duplicates

1

Ledger checks adjustment file

for duplicates

1

Ledger checks adjustment file

for duplicates

1

Ledger checks adjustment file

for duplicates

1

System does not drop "no

charge ads" in Input

1

System does not drop "no

charge ads" in Input

1

System does not drop "no

charge ads" in Input

1

System does not drop "no

charge ads" in Input

1

System does not drop "no

charge ads" in Input

1

System does not drop "no

charge ads" in Input

1

System does not drop "no

charge ads" in Input

1

Killed transient orders smartly

allocate revenue based on

original percentages.

1

Killed transient orders smartly

allocate revenue based on

original percentages.

1

Killed transient orders smartly

allocate revenue based on

original percentages.

1

Killed transient orders smartly

allocate revenue based on

original percentages.

1

Format process allows a

package placeholder without

requiring a front-end order

number

1

Format process allows a

package placeholder without

requiring a front-end order

number

1

Format process allows a

package placeholder without

requiring a front-end order

number

1

Format process allows a

package placeholder without

requiring a front-end order

number

1

Format process allows a

package placeholder without

requiring a front-end order

number

1

Format process allows a

package placeholder without

requiring a front-end order

number

1

Ledger checks adjustment file

for duplicates

1

Ledger checks adjustment file

for duplicates

1

Ledger checks adjustment file

for duplicates

1

Ledger checks adjustment file

for duplicates

1

Ledger checks adjustment file

for duplicates

1

Ledger checks adjustment file

for duplicates

1

Ledger checks adjustment file

for duplicates

1

Ledger checks adjustment file

for duplicates

1

System accepts more than 5

c/c for an order.

1 System accepts more than 5

c/c for an order.

1 System accepts more than 5

c/c for an order.

1

System does not drop "no

charge ads" in Input

1
System does not drop "no

charge ads" in Input

1

Format process allows a

package placeholder without

requiring a front-end order

number

1
Format process allows a

package placeholder without

requiring a front-end order

number

1

Ledger checks adjustment file

for duplicates

1

Format process allows a

package placeholder without

requiring a front-end order

number

1

Ledger checks adjustment file

for duplicates

1

Ledger checks adjustment file

for duplicates

1

Ledger checks adjustment file

for duplicates

1

Total Points 42 42 42

= team velocity

Building a Release Plan

39 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

User Stories by Sprint

Building a Release Plan

40 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

The Team Room Approach to Release Plan Mgmt

Building a Release Plan

Pros – very visible and tangible, great for co-located teams, easy to modify

Cons – not under version control, harder for distributed teams to visualize, takes space

41 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

The Virtual Approach to Release Plan Management

Iteration Story Points

1 12

Search for one-way flights by origin & destination 6

Search for one-way flights by time 3

See response from credit card processing service 3

2 15

Allow city names for origin & destination 4

Display complete flight information on results 5

Validate front-end search criteria, add default values for dropdowns 2

Spike hookup to pricing engine 1

Search for one-way flights by date 3

3 21

Search for round-trip flights 3

Display credit card entry page for an itinerary 2

Validate credit card input 2

Submit valid CC information to CC service 5

Display prices for flights (unknown size, plan for 6) 6

Complete sale with MC or Visa 3

4 20

Search for multi-stop flights 5

Constrain search by other parameters (class, carrier, # of connections) 2

Specify number of travelers in search 1

Page between search results 4

Complete sale with AmEx or Discover 1

Generate simple report for ops 7

5 20

Maintain sessions for 1/2 hour 1

Generate full txn report 8

Book flight(s) on single airline 2

Book flight(s) on multiple airlines 3

Put reservation on hold 2

Add F.F. number to reservation 1

Retrieve on-hold reservation 2

Book on-hold reservation 1

Grand Total 88

Building a Release Plan

42 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Detail Initial Sprint(s)

 Build detailed requirements from User Stories for initial
Sprint(s)

– Typically captured in a requirements document

– Traceable to User Stories

 Build a test plan for testing requirements and user stories
– Define test cases and scripts

– Test requirements and end-to-end scenarios

Building a Release Plan

43 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Iterative Development Process

44 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Typical Roles
 Project Manager – responsible for the day to day functional delivery of the software,

managing project schedule and priorities, and working with stakeholders to resolve any

project issues

 Architect – responsible for coding, design and architecture standards review and

compliance, solutions definition and overall performance characteristic of the software

 Analyst – supports project manager in the proper definition of requirements

 Development Lead – responsible for day to day technical implementation of the software

and technical management of developers

 Developers – responsible for technical implementation of the software

 QA/Test Lead – responsible for the day to day testing, verification and validation of the

software, compliance, management of the testers and automation of the test cases

 Testers – responsible for the testing, verification and validation of the software and the

automation of the test cases

 Business stakeholder or proxy – available when needed to answer questions regarding

the product, market, customer needs

45 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Team Communication during Agile Development

 Effective communication between all team members is
absolutely critical to a successful Agile project

 A meeting rhythm should be established to assure
communication happens at least at key Sprint junctures

 Important team meetings include:
– Sprint kickoffs

– Daily standups

– User acceptance testing

– Retrospectives

46 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Wrap-Up

47 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Agile books we recommend

 Beck, Kent, ―Extreme Programming – Embracing Change‖,
Addison-Wesley Professional, 2004

 Cohn, Rob, ―User Stories Applied‖, Addison-Wesley
Professional, 2004

 Cohn, Rob, ―Agile Estimating & Planning‖, Prentice Hall
PTR, 2005

 Crispin, Lisa, ―Agile Testing – A Practical Guide for Testers
& Agile Teams‖, Addison-Wesley Professional, 2009

 Duvall, Paul, ―Continuous Integration: Improving Software
Quality and Reducing Risk‖, Addison-Wesley Professional,
2007

48 © Copyright 2009-2010 Coveros, Inc.. All rights reserved.

Questions?

 Contact information:
– Jeffery Payne, Coveros, Inc.

– 703-431-2920

– jeff.payne@coveros.com

