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Motivation: The Need for an Objective 
Test Value Metric

• Test value is generally proposed as:

– Early identification of problems

– Cost avoidance

– Cost of rework

• All must be estimated – we can never know what 
would not be found if a test was not conducted

• All are valid reasons to test, but none can be 
measured absolutely to provide a common 
reference point
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Technical Uncertainty as a Value 
Metric

• Cost avoidance and rework are not good value metrics 
because they cannot be defined or measured during a 
weapon system life cycle

• Technical uncertainty can be estimated prior to a test 
and evaluated after the test using statistical techniques
– Provides a common metric of comparison

– Can be measured

– Is easily related to risk

• Technical uncertainty as a value metric, along with 
cost, schedule, and other parameters of interest can be 
related to stakeholder utility as a basis of comparison
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Decision Analysis Framework*

Identify the decision 
situation and understand  

test objectives for each test 
in portfolio of test points

For each type of test in the 
portfolio, identify 2-3 

alternative test proposals 
where feasible

Decompose and model the 
problem:

1. Problem structure

2. Technical Uncertainty

3. Stakeholder Preferences

Choose the best alternative:

Maximize portfolio utility 
within cost constraints

Sensitivity analysis if desired

Further 
analysis if 
needed

*Adapted from Clemen, R. T., & Reilly, T. (2001). Making Hard Decisions with DecisionTools(R) (Second ed.). 
Pacific Grove, California: Duxbury Thomson Learning.

- Risk attitudes
- Utility functions to translate 
test value into stakeholder utility
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Value of individual test alternatives based 
on predicted ability to reduce uncertainty

For example: radar software 
regression testing, takeoff 
performance, landing 
performance, radar system 
reliability

-Portfolio of alternative test proposals
- Cost constraints



Technical Uncertainty Framework
Developed From Literature Review*

Unknowable Uncertainty Knowable Uncertainty (Ambiguity)

Essential Elements of Uncertainty:

Components of Uncertainty Aleatory Epistemic 

Sources of Technical 
Uncertainty

Measurement (input/output), model structure, model selection, 
prediction error, inference uncertainty

Application to Test and Evaluation:

Test Goal Reduce Uncertainty Characterize Uncertainty

Type of Model Available Physics-based None or limited

Empirical

Characterization of Uncertainty:

Uncertainty Evaluation Entropy and entropy-based measures

Uncertainty Reduction Model Using and Updating:
Using data to reduce 
uncertainty and 
validate/update model

Model Building:
Using data to build model and 
estimate uncertainty

Uncertainty Depiction
(not an exhaustive list)

Probability Distribution/Summary Statistics
Confidence, Prediction, Tolerance, or Credible Intervals

Akaike Information Criterion, Deviance Information Criterion

*References in backup slides 6



Technical Uncertainty Relationships

Reduce
Ambiguity

Reduce
Uncertainty

Residual Risk

Consequence of 
Uncertainty

Aleatory Uncertainty

Epistemic Uncertainty

Remaining
Aleatory Uncertainty

Severity of
Consequence
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Aleatory Uncertainty – due to random effects
Epistemic Uncertainty – due to lack of knowledge



Measuring Technical Uncertainty:
What to Use?

• Desirable properties*:

– Concavity

– Attaining global maximum at the uniform distribution 
(all values are equally likely)

• Shannon’s entropy – meets above properties and 
is easy to measure

• Variance for normal random variables does not 
meet above properties, but can be considered for 
the case of normal random variables

8* Ebrahimi, N., Soofi, E. S., & Soyer, R. (2010). Information Measures in Perspective. International Statistical Review, 
78(3), 383-412. doi: 10.1111/j.1751-5823.2010.00105.x

Variance in general is not the best measure of uncertainty



Measuring Uncertainty:
Shannon’s Entropy
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Maximum uncertainty 
occurs at p=0.5

(uniform distribution)

Function is concave

Shannon’s Entropy for a Binary Variable

H(x) = -∑pi(x) ln [pi(x)] 

Example adapted from Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory (Second ed.). 
Hoboken, New Jersey: John Wiley & Sons, Inc.



Examples Where Variance Is Not
a Good Uncertainty Measure*
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Exponential entropy = 0.3069
Gamma entropy = 1.5772

Equal variance, but very different entropy;
exponential entropy is significantly lower

Uniform distribution has smaller variance,
but beta distribution has lower entropy

* Examples adapted from Ebrahimi, N., Soofi, E. S., & Soyer, R. (2010). Information Measures in Perspective. 

International Statistical Review, 78(3), 383-412. doi: 10.1111/j.1751-5823.2010.00105.x



Entropy and Gaussian Variance: 
Entropy is the more conservative measure
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Until the variance becomes very small, 
entropy is a more conservative 
measure of relative uncertainty 

reduction than variance

Based on Matlab simulation of 10000 replications



Intermediate Conclusion

• Shannon’s entropy is a better technical 
uncertainty measure than variance

– Works for all distributions and is simple to compute

– Variance is sometimes misleading; probability 
distribution function with smallest variance does not 
necessarily have least uncertainty

– Is more conservative than variance for a normal 
random variable

– Can compare all uncertainties in a test portfolio with 
same units (nats)
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Simple Examples: Using the Technical 
Uncertainty Measure

• Maximizing test utility to two decision makers 
(one test, no constraints)

• Portfolio optimization based on maximizing 
overall test value/utility subject to cost 
constraint
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Maximizing Test Utility to Multiple 
Decision Makers: The “U-100”

• Overall test objective:  Obtain quantitative 
performance data for incorporation into the U-100 
Flight Manual (the U-100 is a notional aircraft)

• Two flight test programs are proposed:
– A: Use hand held data; test cost $25000, 1 month test
– B: Use full instrumentation; test cost $50000+2 month 

schedule delay to install instrumentation

• Two decision makers, one risk tolerant and one risk 
averse

• Which test has the greater value: A or B?
• Which test has greater utility, given the two 

decision makers?
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Decision Analysis Framework for the 
U-100 Landing Test

Identify the decision 
situation and understand  

test objectives for each test 
in portfolio of test points

For each type of test in the 
portfolio, identify 2-3 

alternative test proposals 
where feasible

Decompose and model the 
problem:

1. Problem structure

2. Technical Uncertainty

3. Stakeholder Preferences

Choose the best alternative:

Maximize portfolio utility 
within cost constraints

Sensitivity analysis if desired
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Overall test objective: Obtain 
quantitative performance 
data for incorporation into 
the U-100 flight manual

Derived test objectives: 
- With 99% confidence, 
determine the maximum 
rollout distance for various 
U-100 configurations
- Determine best braking 
technique
- Validate physics-based 
model

Test Alternatives:
0: No test
A: $25K, one month
B: $50K, three months

Value of individual test alternatives 
based on predicted ability to reduce 
uncertainty

- One risk-averse decision maker, 
one risk-tolerant decision maker
- Elicit test utilities from DMs 
based on test value

Use simple weights combined with 
test utility to maximize utility

-Two test alternatives
- No explicit cost or schedule 
constraints



Technical Uncertainty Framework for the U-100 
Landing Test

Unknowable Uncertainty Knowable Uncertainty (Ambiguity)

Essential Elements of Uncertainty:

Components of Uncertainty Aleatory – dominant Epistemic  -- small (good model)

Sources of Technical 
Uncertainty

Variability in landing/braking process, instrumentation precision and 
accuracy, using model to compare to and predict flight manual values

Application to Test and Evaluation:

Test Goal Reduce Uncertainty

Type of Model Available Physics-based

Characterization of Uncertainty:

Uncertainty Evaluation Entropy

Uncertainty Reduction Model Using and Updating:
Using data to reduce uncertainty and validate/update model

Uncertainty Depiction
(Based on proposed analysis 
techniques)

Probability Distribution/Summary Statistics
Confidence or Prediction Intervals
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Using Uncertainty as a Value Measure 

Initial Model 
Estimate

Predicted Flight Test 
Result With Hand 

Held Data

Predicted Flight Test 
Result With Full 
Instrumentation

SME Estimate After 
Initial Design
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Entropy = 7.63
= 500  

Entropy = 7.88
= 660  

B clearly has more value, but does it have more utility, given the two decision makers?

1 2

3A 3B

Entropy = 6.72
= 200  

Entropy = 5.33
= 50  

Designers were 
overly optimistic!



Computing Utility Using Simple Weights
Test Factor Measure Risk-Averse Decision Maker Risk-Tolerant Decision Maker

Utility (U) Weight 
(W)

Total 
(U*W)

Utility Weight Total

None Schedule 0 0 5 0 10 10 100

Cost 0 0 6 0 10 9 90

Uncertainty 
reduction

0 0 10 0 0 3 0

UTILITY OF THE OPTION TO NOT TEST 0 190

Test A Schedule 1 10 5 50 9 10 90

Cost 25000 10 6 60 7 9 63

Uncertainty 
reduction

1.16 8 10 80 6 3 18

UTILITY OF TEST OPTION A 190 171

Test B Schedule 3 10 5 50 8 10 80

Cost 50000 9 6 54 7 9 63

Uncertainty 
reduction

2.55 10 10 100 7 3 21

UTILITY OF TEST OPTION B 204 164

Highest utility if 
there is no 
requirement to test

Highest utility if 
there is a 
requirement to test

Highest utility
18



Computing Utility if Both DMs Have a 
Vote of Equal Weight

Test DM 1 Total DM 2 Total Total

None 0 190 190

Test A 190 171 361

Test B 204 164 368

Slightly higher by small margin
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But, then there was a budget cut.  Test A was selected due to the 
lower cost and the fact that it has only slightly less utility.

And yet another budget cut reduced the number of test points 
that could be flown …



Test Results: Landing Data*, Pre- and Post-
Test Monte-Carlo Analysis
Configuration (ft) Entropy (nats)

Flaps Braking
Pre-test 
model

Post-
test 

model
Pre-test 
model

Post-
test 

model

45 Moderate 858.4 404.1 8.17 7.42

45 Heavy 755.0 402.8 8.05 7.42

45 Max 723.9 578.0 8.00 7.78

60 Moderate 731.3 352.8 8.01 7.28

60 Heavy 629.7 350.6 7.86 7.28

60 Max 608.7 500.1 7.83 7.63

100 Moderate 554.6 295.7 7.74 7.11

100 Heavy 501.0 285.9 7.64 7.07

100 Max 483.4 398.9 7.60 7.41

Pooled 660.4 406.3 7.88 7.38
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Variance/standard deviation decreases significantly post-test, but entropy decreased only 
slightly  there is still a significant amount of uncertainty!

* Data taken from McNamar, L. F., & Gordon, H. C. (1963). T-38A Category II Performance Test. 
Edwards AFB: Air Force Flight Test Center.



Notional Test Problem:
Maximizing Overall Test Portfolio Value Subject 

to Cost Constraint
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Test Value (Entropy Reduction)

Test Opt A Opt B Opt C

Landing 1.2 2.6 -

Radar 2.4 2.7 2.9

ADC 1.9 2.1 2.3

HUD 1.7 2.5 3.7

Test Cost (x100K)

Test Opt A Opt B Opt C

Landing 25 50 -

Radar 5 10 15

ADC 20 40 50

HUD 10 20 30

Maximum test value assuming total test budget of $100K
(test value = 9.7 at $100K)

ADC = Air Data Computer
HUD = Heads-Up Display



Notional Test Problem:
Maximizing Overall Test Portfolio Value Subject 

to Cost Constraint
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Total Test Cost ($100K)
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Conclusions

• Technical uncertainty reduction measured using 
entropy provides a consistent way to measure the 
value of a test

• Utility of test to multiple stakeholders must still be 
taken into account before selecting actual test option 
(highest value test may not have greatest utility)

• Although technical uncertainty reduction is an estimate 
before the test executes, it can be measured once test 
is complete to determine if test value metric was met 
(may also lead to decision to terminate test early or 
conduct additional testing)
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Future Work

• Apply full decision analysis framework to a portfolio of test points 
selected from real-world flight test problems and both single and 
multiple stakeholders/decision makers:
– Physics-based models
– Empirical models
– Include model uncertainty and multi-model inference
– Large variance data with small sample sizes

• Examine different utility functions and optimization techniques
• Continue technical uncertainty research and update technical 

uncertainty framework as required, with focus on analysis 
techniques currently in use: 
– Traditional statistical approaches
– Bayesian techniques
– Information theoretic approaches
– Results represented via different intervals (e.g., confidence, 

prediction, tolerance, and credible)

24



Contact Information

25

Eileen A. Bjorkman
(661) 275-2074

eileen.bjorkman@edwards.af.mi

Shahram Sarkani, Ph.D., P.E
(888) 694-9627

sarkani@gwu.edu

Thomas A. Mazzuchi, D.Sc.
(202) 994-7541

mazzu@gwu.edu

mailto:eileen.bjorkman@edwards.af.mi
mailto:sarkani@gwu.edu
mailto:mazzu@gwu.edu


Backup

26



References (1/4)

• Abbas, A. E. (2004). Entropy methods for adaptive utility elicitation. Systems, Man and Cybernetics, Part A: Systems 
and Humans, IEEE Transactions on, 34(2), 169-178. 

• Abel, P. S., & Singpurwalla, N. D. (1994). To Survive or to Fail: That Is the Question. The American Statistician, 48(1), 
18-21. 

• An, J., Acar, E., Haftka, R. T., Kim, N. H., Ifju, P. G., & Johnson, T. F. (2008). Being Conservative with a Limited 
Number of Test Results. Journal of Aircraft, 45(6), 1969-1975. 

• Anderson, D. R., Burnham, K. P., & Thompson, W. L. (2000). Null Hypothesis Testing: Problems, Prevalence, and an 
Alternative. The Journal of Wildlife Management, 64(4), 912-923. 

• Aven, T. (2004). On How to Approach Risk and Uncertainty to Support Decision-Making. Risk Management, 6(4), 
27-39. 

• Ben-Haim, Y. (1999). Design certification with information-gap uncertainty. Structural Safety, 21(3), 269-289. doi: 
10.1016/s0167-4730(99)00023-5

• Browning, T. R. (2003). On Customer Value and Improvement in Product Development Processes. [Regular Paper]. 
Systems Engineering, 6(1), 49-61. 

• Browning, T. R., Deyst, J. J., Eppinger, S. D., & Whitney, D. E. (2002). Adding value in product development by 
creating information and reducing risk. Engineering Management, IEEE Transactions on, 49(4), 443-458. 

• Burnham, K. P., & Anderson, D. R. (2004). Mutlimodel inference: understanding AIC and BIC in model selection. 
Sociol. Methods Res., 33(2), 261-304. doi: 10.1177/0049124104268644

• Cacuci, D. G. (2003). Sensitivity and uncertainty analysis (Vol. 1, Theory).
• Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory (Second ed.). Hoboken, New Jersey: John 

Wiley & Sons, Inc.

27



References (2/4)

• DeLoach, R. (2008). Bayesian Inference in the Modern Design of Experiments. Paper presented at the 46th AIAA 
Aerospace Sciences Meeting and Exhibit, Reno, Nevada. 

• De Meyer, A., Loch, C. H., & Pich, M. T. (2002). Managing Project Uncertainty: From Variation to Chaos. [Article]. 
MIT Sloan Management Review, 43(2), 60-67. 

• Deyst, J. J. (2002). The application of estimation theory to managing risk in product developments. Paper presented 
at the Digital Avionics Systems Conference, 2002. Proceedings. The 21st.

• Dezfuli, H., Kelly, D., Smith, C., Vedros, K., & Galyean, W. (2009). Bayesian Inference for NASA Probabilistic Risk and 
Reliability Analysis. (NASA/SP-2009-569). Washington, DC.

• Draper, D. (1995). Assessment and Propagation of Model Uncertainty. Journal of the Royal Statistical Society. Series 
B (Methodological), 57(1), 45-97. 

• Ebrahimi, N., Soofi, E. S., & Soyer, R. (2010). Information Measures in Perspective. International Statistical Review, 
78(3), 383-412. doi: 10.1111/j.1751-5823.2010.00105.x

• Emery, A. F. (2009). Estimating deterministic parameters by Bayesian inference with emphasis on estimating the 
uncertainty of the parameters. [Article]. Inverse Problems in Science & Engineering, 17(2), 263-274. doi: 
10.1080/17415970802404985

• Ferrero, A., & Salicone, S. (2004). The random-fuzzy variables: a new approach to the expression of uncertainty in 
measurement. Instrumentation and Measurement, IEEE Transactions on, 53(5), 1370-1377. 

• Giadrosich, D. L. (1995). Operations Research Analysis in Test and Evaluation. Washington, DC: American Institute 
of Aeronautics and Astronautics.

• Hamada, M., Johnson, V., Moore, L. M., & Wendelberger, J. (2004). Bayesian Prediction Intervals and Their 
Relationship to Tolerance Intervals. Technometrics, 46(4), 452-459. 

• Hatfield, A. J., & Hipel, K. W. (1999). Understanding and managing uncertainty and information. Paper presented at 
the Systems, Man, and Cybernetics, 1999. IEEE SMC '99 Conference Proceedings. 1999 IEEE International 
Conference on.

• Hess, J. T., & Valerdi, R. (2010). Test and evaluation of a SoS using a prescriptive and adaptive testing framework.
Paper presented at the System of Systems Engineering (SoSE), 2010 5th International Conference on.

28



References (3/4)
• Hodges, J. S. (1987). Uncertainty, Policy Analysis and Statistics. Statistical Science, 2(3), 259-275. 
• Hoppe, M., Engel, A., & Shachar, S. (2007). SysTest: Improving the Verification, Validation, and Testing Process--

Assessing Six Industrial Pilot Projects. Systems Engineering, 10(4), 323-347. 
• JCGM. (2010). Evaluation of measurement data -- Guide to the expression of uncertainty in measurement.
• Jones, B. L. (1995). Near Real-Time Approach to Statistical Flight Test. Journal of Aircraft, 32(4), 782-786. 
• Kadvany, J. (1996). Taming Chance: Risk and the Quantification of Uncertainty. Policy Sciences, 29(1), 1-27. 
• Kraft, E. M. (2010). After 40 Years Why Hasn't the Computer Replaced the Wind Tunnel? ITEA Journal, 31(3), 329-

346. 
• Lenz, R., & Gardner, L. (1997). Risk in Weapon System Acquisition: A Decision Support Approach to the Economics of 

Test and Evalaution Paper presented at the ITEA Conference on the Economics of Test and Evaluation, Atlanta, 
Georgia. 

• McNamar, L. F., & Gordon, H. C. (1963). T-38A Category II Performance Test. Edwards AFB: Air Force Flight Test 
Center.

• Merrick, J. R. W. (2009). Bayesian Simulation and Decision Analysis: An Expository Survey. [Article]. Decision 
Analysis, 6(4), 222-238. doi: 10.1287/deca.1090.0151

• Ng, S. H., & Chick, S. E. (2006). Reducing parameter uncertainty for stochastic systems. ACM Trans. Model. Comput. 
Simul., 16(1), 26-51. doi: 10.1145/1122012.1122014

• Nilsen, T., & Aven, T. (2003). Models and model uncertainty in the context of risk analysis. Reliability Engineering & 
System Safety, 79(3), 309-317. doi: 10.1016/s0951-8320(02)00239-9

• Park, I., & Grandhi, R. V. (2010). Quantification of Multiple Types of Uncertainty in Computer Simulation Using 
Bayesian Model Averaging. Paper presented at the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural 
Dynamics, and Materials Conference, Orlando, Florida. 

• Parry, G. W. (1996). The characterization of uncertainty in Probabilistic Risk Assessments of complex systems. 
Reliability Engineering & System Safety, 54(2-3), 119-126. doi: 10.1016/s0951-8320(96)00069-5

29



References (4/4)

• Paté-Cornell, M. E. (1996). Uncertainties in risk analysis: Six levels of treatment. Reliability Engineering & System 
Safety, 54(2-3), 95-111. doi: 10.1016/s0951-8320(96)00067-1

• Paté-Cornell, M. E., & Dillon, R. L. (2006). The Respective Roles of Risk and Decision Analyses in Decision Support. 
[Article]. Decision Analysis, 3(4), 220-232. doi: 10.1287/deca.1060.0077

• Pich, M. T., Loch, C. H., & Meyer, A. d. (2002). On Uncertainty, Ambiguity, and Complexity in Project Management. 
Management Science, 48(8), 1008-1023. 

• Pilch, M., Trucano, T. G., & Helton, J. C. (2011). Ideas underlying the Quantification of Margins and Uncertainties. 
Reliability Engineering and System Safety. doi: 10.1016/j.ress.2011.03.106

• Sankararaman, S., & Mahadevan, S. (2011). Uncertainty Quantification and Model Validation under Epistemic 
Uncertainty due to Sparse and Imprecise Data. Paper presented at the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, 
Structural Dynamics and Materials Conference, Denver, Colorado. 

• Schrader, S., Riggs, W. M., & Smith, R. P. (1993). Choice over uncertainty and ambiguity in technical problem 
solving. Journal of Engineering and Technology Management, 10(1-2), 73-99. doi: 10.1016/0923-4748(93)90059-r

• Sheridan, T. B. (1995). Reflections on information and information value. Systems, Man and Cybernetics, IEEE 
Transactions on, 25(1), 194-196. 

• Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. v. d. (2002). Bayesian Measures of Model Complexity and 
Fit. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 64(4), 583-639. 

• Tucker, A. A., & Dagil, C. H. (2009). Design of experiments as a means of lean value delivery to the flight test 
enterprise. Systems Engineering, 12(3), 201-217. 

• Ward, S., & Chapman, C. (2008). Stakeholders and uncertainty management in projects. [Article]. Construction 
Management & Economics, 26(6), 563-577. doi: 10.1080/01446190801998708

• Wendelberger, J. R. (2010). Uncertainty in Designed Experiments. [Article]. Quality Engineering, 22(2), 88-102. doi: 
10.1080/08982110903510420

• Zadeh, L. A. (1995). Discussion: Probability Theory and Fuzzy Logic Are Complementary Rather Than Competitive. 
Technometrics, 37(3), 271-276. 

30


