

A Concept for Optimal Test Article Instrumentation Selection

James H Gries John P Ludes Richard C Munsterteiger William C Thomas

Raytheon Missile Systems 1151 E Hermans Rd Tucson, AZ 85734 (520) 794-5985

Motivated by Goal to Improve Design for Test Efficiency

- Break Traditional Paradigms
- Minimize Modification of the Tactical Configuration
- Improve System Reliability Expectations
- Increase Design for Manufacturing Assembly
- Enhance Design-to-Cost Goals
- Prognostics Will Become More Prominent in Future Systems
- Apply Statistical Techniques Associated With Design-of-Experiments

Concept Focused on Process Improvement with Impact on Product Cost Reduction

Test Article Instrumentation Selection Process Needs To Be Refined

- Finite Element Modeling Drives Instrumentation Selection
 - Models Are Required to be High Fidelity
- Engineering Development Follows Conservative Approaches
 - Select Instrumentation Based On Past Experience
- Design Verification Demands High Confidence in Modeling Parameters
 - Instrument Test Article to Improve System Modeling Parameters
- Instrumentation Presence Perturbs the Tactical Configuration
 - Functional Performance May be Limited by Instrumentation Presence

Develop A Mathematically Justified Process To Improve the Instrumentation Selection Methods and Make Them More Robust

Test Is 51.6 % of All Rework*

*Data source: RMS Quality

Improve Test Efficiency With Refined Instrumentation Groups

A Typical "Real-World" Test Example

- Primary Test Objective To verify product meets its performance requirements while being exposed to a tactical environment.
- **Test Description** An operational "Timeline" will be performed while product is exposed to the environment. Typical instrumentation consists of instrumentation mounted internally and externally.
- "Timeline" Description Consists of powering up the product and progressing through various modes of operation. Modes of operation exercise product functionality while environment is being applied.
- Success Criteria Product meets its performance requirements while being exposed to the environment.
- **Verification Method** Success criteria is verified by analyzing data from the product's telemetry and internal/external instrumentation.

Most Tests Share These Common Characteristics

Activity	Labor With Conservative Instrumentation Groups	Labor With Optimized Instrumentation Groups
<u>Test Setup:</u>		
Cable routing, labeling, repair		
Cable connections to data acquisition system (DAS)		
Data Capture:	/ 2 0	776 75
Setup DAS to capture accelerometers		\&\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Perform accelerometer "tap-checks", troubleshoot	and Associated Hours	Consider Reduced Associated Cost
Post Test Analysis:	15. Sign	
Compare product's telemetry to performance requirements. Look for anomalies.	00 P	12 8 X
Compare accelerometer data to environment specification. Look for anomalies.		
Conduct Test Data Review. Generate Test Report.		

Test Labor Cost Reduced by Using Less Instrumentation

Instrumentation Optimization is Critical to Design Evaluation

Designs are Immature and in the early life-cycle phase when most testing is performed

- Early life cycle failures are most often caused by:
 - Immature Manufacturing Processes
 - Poor Workmanship
 - Poor Quality Control
 - Insufficient burn-in, de-bugging and/or breaking-in

Chance Failures may be caused by the interference or overlap of the designed in strength and the experienced stress in operation due to:

- Designed in stress margins
- Occurrence of higher than expected random modes
- Higher than expected random loads
- Lower than expected random strengths

Excessive Instrumentation Can Potentially Mask Critical Failure Modes

Instrumentation Considerations for the Tactical Configuration

Limit Trespass on the Tactical Configuration

Optimizing Instrumentation is Important for Preserving Tactical Configuration

Retain Design Performance Characteristics

- Minimize Instrumentation to Preserve Design Characteristics (e.g. Weight, Modal)
- Dynamic and Thermal Response May Be Affected / Masked With Excessive Instrumentation

Reduce Errors and/or Failures During Manufacturing

Complexity of Instrumentation Can Adversely Affect Both Cost and Schedule

Retain the Tactical Configuration Throughout the Product Life-cycle

Instrument Design Elements that Drive System Reliability

Focus on Critical Elements of the Design

- Use the FMECA and Reliability Predictions to Identify Critical Circuits and Components
- Thermal and Dynamic Models Will Identify Circuit Card Assembly 'hot-spots' or High Dynamic Response Areas
- Conduct Electronic Parts/Circuit Tolerance Analysis to Identify Critical Circuits

Embedded Instrumentation Will be Key to Prognostics

Prognostics and Health Management for Future Systems

What is it?

Diagnostics – The process of Determining the Capability State of a Component to Perform Its Function(s)

Prognostics – The Predictive Diagnostics Which Includes Determining the Remaining Useful Life for Proper Operation of a Component

Health Management – The Capability to Make Appropriate Decisions About Maintenance Actions Based on Diagnostic / Prognostics Information, Available Resources and Operational Demand

What will it do for us?

Provide a Foundation for Mission Assurance

How do we do it?

- Assess Opportunities for Embedded Sensors to Provide Prognostics Data
- Implement Robust Embedded Test (RET) Data Collection and Processing Capability

Improved Life-cycle Performance for the Tactical Product

Desired Properties of A Measurement System

- Accuracy Ability to produce an average measured value which agrees with the true value or standard being used
- Precision Ability to repeatedly measure the same product or service and obtain the same results
- Stability Ability to repeatedly measure the same product or service over time and obtain the same average measured value

Optimize Each Element of A Measurement System

Considerations for the Use of Design-of-Experiments Techniques for Optimizing the Instrumentation Selection Process

Consider the A Traditional Design Space

- Many Experiments are executed using a method which holds all but one factor at nominal and varying only one factor
- One factor at a time does not cover much design space
- It is a poor substitute for a more rigorous orthogonal design

A One Factor at a Time Design Space Will Not Discover Parameter Interactions

Customer Success Is Our Mission

Consider a 3-factor, 5-level Full Factorial Design Space

- A 5 level full factorial explores the design space very thoroughly
- It allows you to discover two factor, three factor and higher interactions
- It allows you to discover quadratic, cubic and higher order effects

This Design Uses 125 Combinations
Which May Be Cost Prohibitive

5 LEVEL 3 FACTOR DESIGN					
RUN	X1	X2	хз		
1	-0.84	0.84	0		
2	0.84	-1.68	1.68		
3	0	1.68	-1.68		
4	0.84	0	0		
5	-1.68	0.84	0		
6	-1.68	0	-0.84		
7	-0.84	0	0		
8	-0.84	1.68	0		
9	-0.84	0	-0.84		
10	-1.68	0	1.68		
11	-1.68	1.68	0.84		
12	0	-0.84	0.84		
13	0.84	0.84	1.68		
14	0.84	1.68	0		
15	0.84	1.68	-0.84		
16	0	-0.84	-1.68		
17	1.68	0	-0.84		
18	1.68	-0.84	1.68		
19	0	0	0.84		
20	-1.68	-0.84	0		
21	-1.68	1.68	-1.68		
22	-0.84	1.68	-1.68		
23	-1.68	0	0		
24	-0.84	1.68	1.68		
*	0.84	0	-0.84		
*	0.84	0	0.84		
*	1.68	1.68	1.68		
125	0.84	1.68	-1.68		
	nforo				

Design Space Thoroughly Explored Using a 3-factor, 5-level Full Factorial Design

The 3-factor, 5-level full factorial design is described by a cube with the three factors on the X, Y and Z axis

Full Factorial Designs Will Drive The Cost of the Experimental Execution

Customer Success Is Our Mission

Consider A Central Composite Design Space

- We can accomplish the same five levels identified for a full factorial design with a central composite design
- It is a much smaller sub-set of the full factorial
- It does not explore the design space as rigorously as the full factorial

5-LEVEL 3-FACTOR					
CENTRAL COMPOSITE DESIGN					
RUN	X1	X2	Х3		
1	1	-1	1		
2	0	0	0		
3	-1	1	1		
4	-1.68	0	0		
5	-1	-1	1		
6	1	1	1		
7	1	1	-1		
8	-1	-1	-1		
9	0	1.68	0		
10	0	-1.68	0		
11	-1	1	-1		
12	0	0	1.68		
13	0	0	0		
14	1	-1	-1		
15	0	0	-1.68		
16	1.68	0	0		

Design Uses 16 Combinations - Efficient and Cost Effective

The 3-factor 5-level Central Composite Design is described by a cube with the three factors on the X, Y and Z axis

Central Composite Design - Efficient and Cost Effective

The Use of Design-of-Experiments Techniques for Optimizing the Instrumentation Selection Process Has Potential

Instrumentation Optimization Has Significant Benefits

- Improved Reliability by Reducing Complexity
 - Less Instrumentation
- Reduced Manufacturing Cycle Time
 - Lower Test Set-up Time
 - Fewer Labor Hours
 - Test Conduct Time Shortened
 - Post Test Analysis Diminished
- Reduced Special Test Equipment Cost
- Less Handling of Hardware, Fewer Opportunities for Induced Failures
- Minimize Opportunities for False Failures and Associated Trouble-shooting and Resulting Failure Investigation
- Embedded Instrumentation for Prognostics Will Effectively Evaluate the Design Space

Design-of-Experiments Techniques Show Potential for Improving the Instrumentation Selection Process