

- Name: Hae Suk Lee
- Country: South Korea
- Phone number: +82-41-671-2161(+82-10-5070-0913)
- Company : ADD(Agency for Defense Development)
- Email: 7501lee@hanmail.net

A study on design of range reduction dummy fuze(RRDF) for the efficiency of acceptance test

2011. 10

Hae Suk Lee

Contents

- Background and Purpose
- A task for design of RRDF
- A stage for development
- A verification for trajectory
- Results

A difficult for K9 assembly for acceptance test

Fishing Boat

Sea Control

Civil Appeal

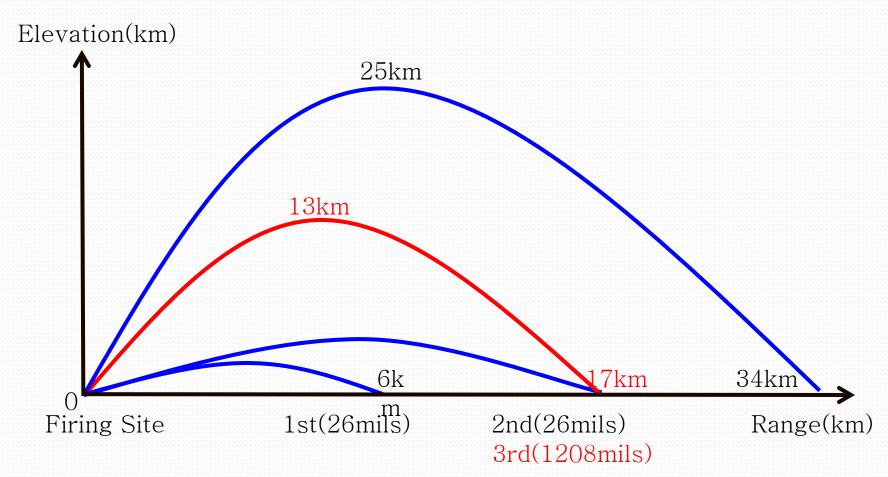
Manpower and Equipment

Test Schedule

Production Plan

K9 Self-propelled howitzer

A content for K9 Acceptance test


Order	Elevation(mil s)	Ammunition	Range for Safety
1	26	KM107/KM73A1/K677(U2)	1~6km
2	26	K309(BB ON)/K519/K678	3~17km
3	1208	K309(BB ON)/K519/K678	22~25km

K309 projectile with RRDF

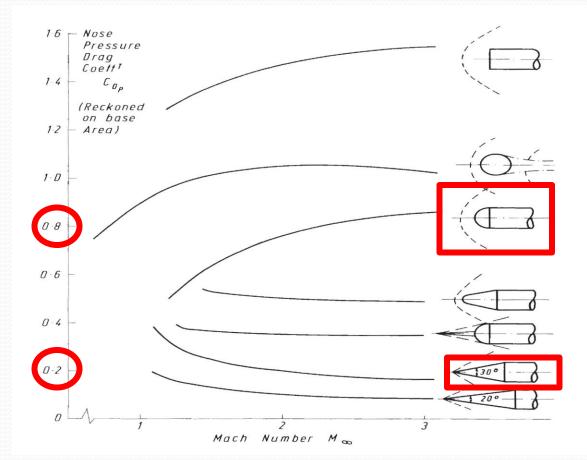


A range for K9 safety range

Firing Direction

A Technology for drag force increasing

- ☐ A task for design of RRDF
- Drag force coefficient


$$C_{D_0} = C_{D_H} + C_{D_{BT}} + C_{D_B} + C_{D_{RB}} + C_{D_{SF}}$$

$$\begin{split} &C_{D_0} = A \ total \ of \ drag \ \text{for} ce \ coefficient} \\ &C_{D_{\mathbb{H}}} = A \ drag \ \text{for} ce \ coefficient \ by \ nose} \\ &C_{D_{\mathbb{B}T}} = A \ drag \ \text{for} ce \ coefficient \ by \ boattail} \\ &C_{D_{\mathbb{B}}} = A \ drag \ \text{for} ce \ coefficient \ by \ base} \\ &C_{D_{\mathbb{R}}} = A \ drag \ \text{for} ce \ coefficient \ by \ rotating \ band} \\ &C_{D_{\mathbb{S}F}} = A \ drag \ \text{for} ce \ coefficient \ by \ skin \ friction \end{split}$$

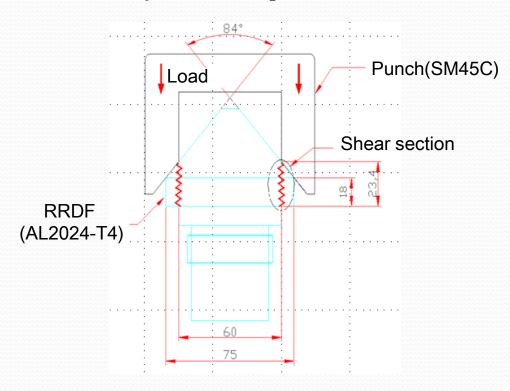
* Reference: Jae Hun Jung, "A Study for Drag force decreasing", Korea Military Academy, 2001(2~3page)

A drag force coefficient by warhead shape

* Refence : Guided Weapons(Brassey's Defense Publishers, 66page)

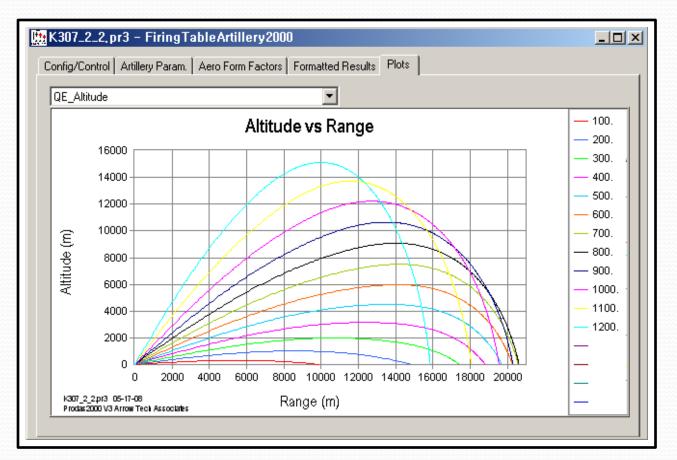
Trajectory Estimate Safety at ultra-pressure

Simulation

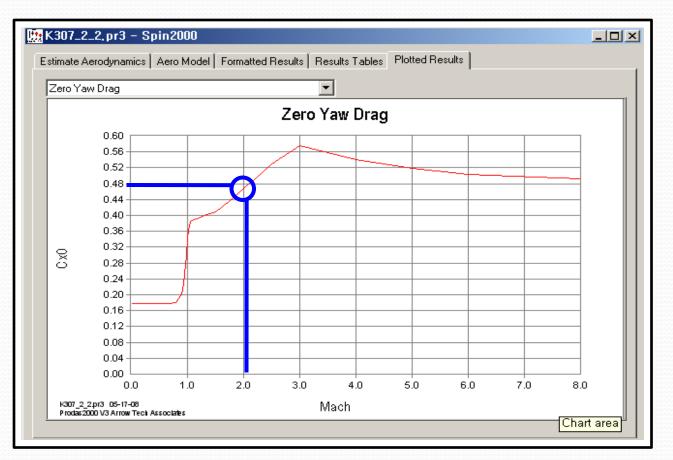

Firing Test (Verification)

Trajectory test (40mm projectile)

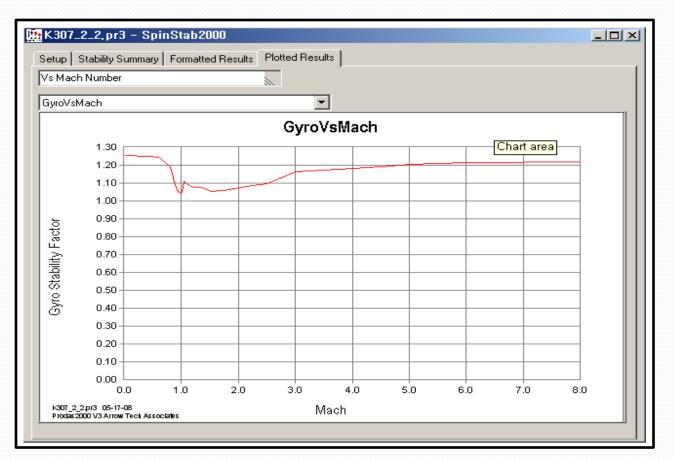
Recoil&C'Recoil Characteristics


- ☐ A task for design of RRDF
- A safety for Ultra pressure(Static test)

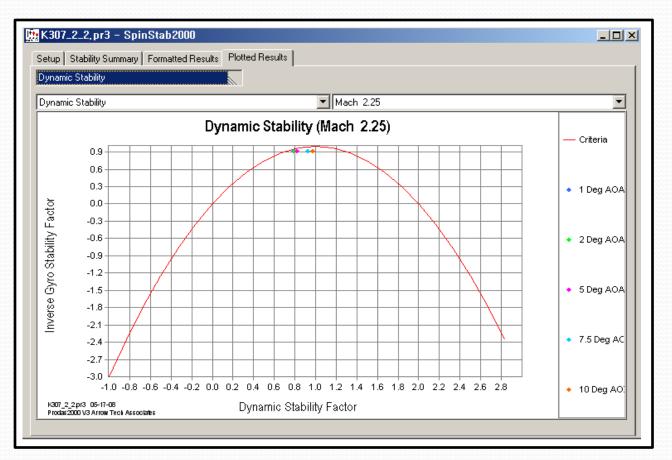
$$P = \tau \times A_1 = \tau \times \pi dt$$
= 24.5 \times 3.14 \times 60 \times 23.4
= 108,009.7 kg
= 108.01 ton
$$\tau = 24.5 (kg/mm^2)$$



- ☐ A task for design of RRDF
- Trajectory estimate(Prodas V3)



- ☐ A task for design of RRDF
- Drag Coefficient estimate(Prodas V3)



- ☐ A task for design of RRDF
- Gyro Stability estimate(Prodas V3)

- ☐ A task for design of RRDF
- Gyro Stability and Dynamic Stability(Prodas V3)

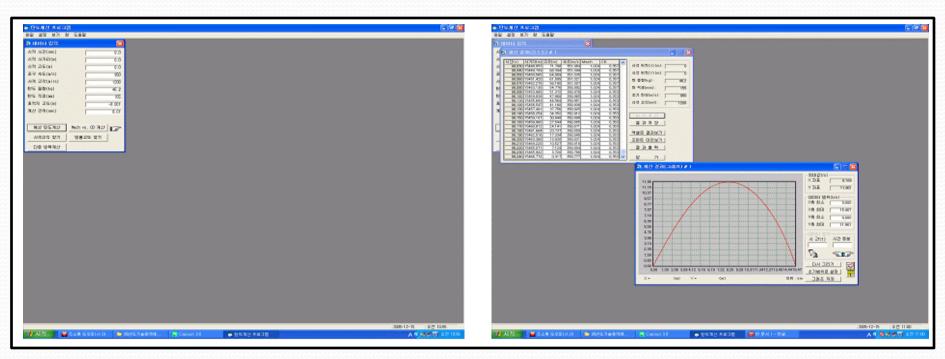
Prodas V3 이용(Gyro Stability & Dynamic Stability)

Gyroscopic Stability & Dynamic Stability

$$S_{\!g} = rac{I_{\!xx}^2 \, p^2}{2 I_{\!yy}
ho A d \, V^2 C_{\!M\!lpha}}$$

$$S_d = rac{2 \left[C_{Nlpha} - C_D + (m d^2 / 2 I_{xx}) (\, C_{Mplpha}
ight]}{C_{Nlpha} - 2 \, C_D - (m d^2 / 2 I_{yy}) (\, C_{Mq} + C_{Mlpha^{'}})}$$

 p^2 : Rotating velocity of projectile $C_{M\alpha}$: Overturn moment coefficient

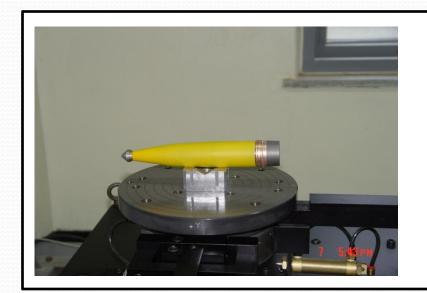

 $C_{N\alpha}$: Normal force coefficient

 $C_{\mathit{Mp}\alpha}: \mathit{Magnus\ moment\ coefficient} \ C_{\mathit{mq}} + C_{\mathit{M}\alpha} \colon \mathit{Diminishing\ moment\ coefficient}$

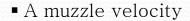
* Reference: Kim jin suk" A study of aerodynamics characteristics of rotating projectiles", ADD, 1990(20~22pages)

- ☐ A task for design of RRDF
- Trajectory Simulation(Point Trajectory Program)

A Range Estimate with point trajectory program


- ☐ A task for design of RRDF
- Trajectory Test(Downsized projectiles : 40mm)

- ☐ A task for design of RRDF
- Trajectory Test(Downsized projectiles : 40mm)



A measurement for Physical Properties


Trajectory Test(Downsized projectiles : 40mm)

1 100		_	
		_	
	-		
4	-		
100			

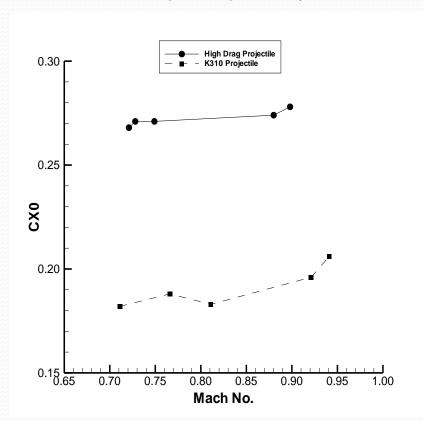
Reduces RRDF

model order	Reduced RRDF(m/s)	Reduced K519 fuze(m/s)
1	309.1	328.7
2	315.0	321.5
3	254.1	283.0
4	251.8	265.8
5	261.4	247.2

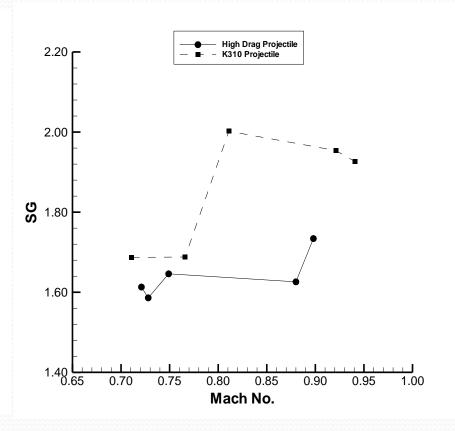
Downsized K519 fuze

Physical Properties

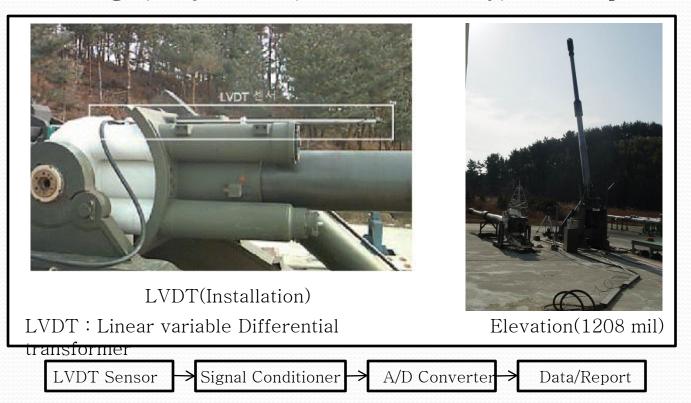
model Properties	Reduced RRDF	Reduced K519 fuze
Weight(g)	1092.5	1085.5
Axial MOI(g-cm ⁹	2575.1	2514.1
Transverse MOI(g-cm)	38024.7	37435.5
CG from Nose(mm)	142.9	154.2



- Trajectory Test(Downsized projectiles : 40mm)
 - ➤ Aerodynamic and Sg (6-DOF Single Fit


	Mach No.∘	$C_{\mathbf{x0}^{\circ}}$	$C_{n\alpha x0^{\vartheta}}$	$C_{\mathbf{m}lpha^{\wp}}$	$C_{\mathbf{mq}^{\wp}}$	$C_{\mathtt{np}lpha^{arphi}}$	$S_{g^{arphi}}$
	0.880₽	0.274 ₽	2.395 🕫	3.070 👂	-10.6 ₽	-1.57₽	1.613 🕹
D	0.898₽	0.278 ₽	2.557 🕫	3.243 🖟	-10.0 ₽	-2.40₽	1.586₽
Downsized - RRDF +	0.728₽	0.271 ₽	2.155 🕫	2.829 +	-10.0 ₽	-1.880	1.646₽
	0.721₽	0.268 ₽	2.229 🕫	2.786 ₽	-10.0 ₽	-1.93	1.626₽
	0.749₽	0.271 ₽	2.163 🕫	3.073 →	-10.0 ⋄	-1.69₽	1.734.
	0.941₽	0.206₽	2.250₽	3.233₽	-21.3₽	-3.25₽	1.687₽
	0.921₽	0.196₽	1.997₽	2.931₽	-20.3₽	-1.91₽	1.688₽
Down size d _≠	0.811₽	0.183 🕫	2.058₽	2.348₽	-15.2₽	-2.56₽	2.002₽
K519 🚜	0.766₽	0.188 🕫	2.109₽	2.386₽	-15.0₽	-2.94	1.954₽
	0.711₽	0.182 🕫	2.174 🕫	2.114 👂	-13.8 🕫	-1.190	1.926₽

Trajectory Test(Downsized projectiles : 40mm)


Drag Coefficient, CXO Comparison

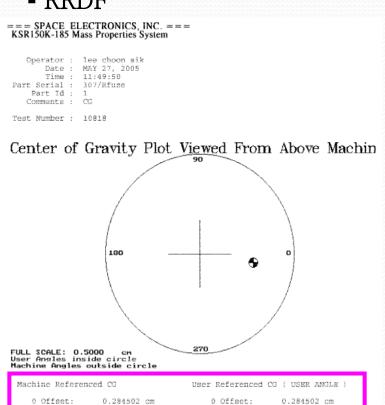
Gyroscopic Stability Factor, SG Comparison

- ☐ A task for design of RRDF
- 155mm K9 Recoil & C'Recoil characteristics
 (Recoil Length, 1Cycle time, C'Recoil velocity, Internal pressure)

☐ A task for design of RRDF(Comparison)

Section	RRDF	K519 Dummy	Plate Fuze
Figure			
Weight	715±15g	715±15g	975g ±25g
Materi al	AL A2024T4- T4 (KS-D-6763)	AL A2024T4-T4 (KS-D-6763)	SCM30 (KS-D-3752)
Length	125mm	167mm	60mm

RRDF


90 Offset:

Magnitude:

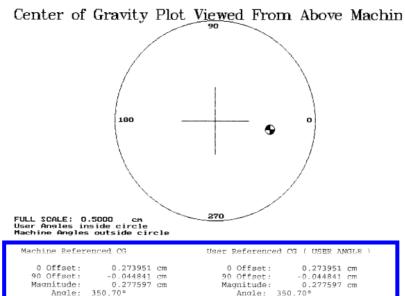
Angle: 351.04°

-0.044848 cm

0.288015 cm

90 Offset:

Magnitude:


Angle: 351.04°

-0.044848 cm

0.288015 cm

K519 Dummy fuze

(A center of weight)

RRDF

```
=== SPACE ELECTRONICS, INC. ===
KSR150K-185 Mass Properties System
```

Operator : lee choon sik Date: MAY 27, 2005 Time : 11:49:50 Part Serial : 307/Rfuze Part Id : 1

Comments : CG

Test Number: 10818

CALCULATIONS

Raw Measurement Information

PART-DATE: MAY 27, 2005 TIME: 11:42:40 TEST NUMBER: 10817 TARE-DATE: MAY 27, 2005 TIME: 11:06:25 TEST NUMBER: 10810 MOI PART-DATE: MAY 27, 2005 TIME: 11:37:39 TEST NUMBER: 10816 MOI TARE-DATE: MAY 27, 2005 TEST NUMBER: 10809 TIME: 11:03:20

Dimensional Information

Test Part Weight: 46.3960 kg CG Height: 15.0000 cm Part 0°=Machine 0.00° Part 90°=Machine 90.00°

Center of Gravity

Machine Referenced CC User Referenced CC (USER ANGLE) 0 Offset: 0 Offset: 0.284502 cm 0.284502 cm 90 Offset: -0.044848 cm 90 Offset: -0.044848 cm

Magnitude: 0.288015 cm Angle: 351.04°

0.288015 cm Magnitude: Angle: 351.04°

Moment of Inertia

Through Center of Table Through Center of Gravity 23064.49427 kg-cm Sg. 23060.64558 kg-cm Sg.

K519 Dummy fuze

=== SPACE ELECTRONICS, INC. === KSR150K-185 Mass Properties System

Operator : lee choon sik Date: MAY 27, 2005 Time : 11:32:51 Part Serial: 307/519 Part Id : 1 Comments : CG

Test Number: 10815

CALCULATIONS

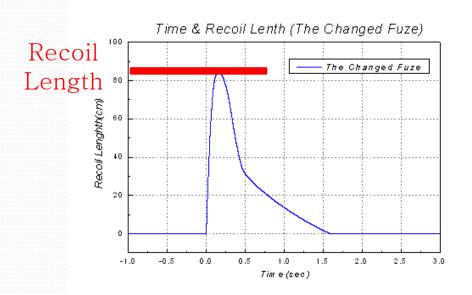
Raw Measurement Information

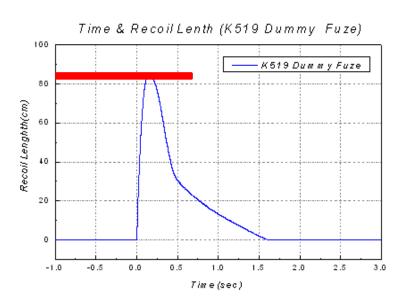
CG PART-DATE: MAY 27, 2005 TIME: 11:24:46 TEST NUMBER: 10814 CG TARE-DATE: MAY 27, 2005 TIME: 11:06:25 TEST NUMBER: 10810 MOI PART-DATE: MAY 27, 2005 TIME: 11:21:27 TEST NUMBER: 10813 MOI TARE-DATE: MAY 27, 2005 TIME: 11:03:20 TEST NUMBER: 10809

Dimensional Information

Test Part Weight: 46.3940 kg CG Height: 15.0000 cm Part 0°=Machine Part 90°-Machine

Center of Gravity

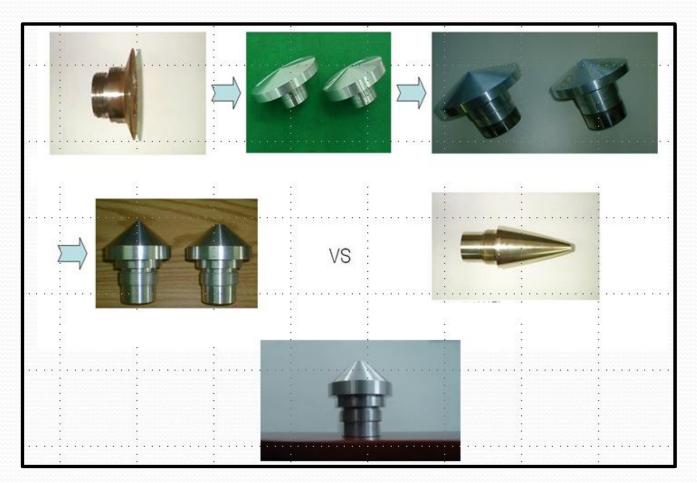

Machine Referenced CG Uger Referenced CG (USER ANGLE) 0 Offset: 0.273951 cm 0 Offset: 0.273951 cm 90 Offset: -0.044841 cm 90 Offset: -0.044841 cm Magnitude: 0.277597 cm Magnitude: 0.277597 cm Angle: 350.70° Angle: 350.70°

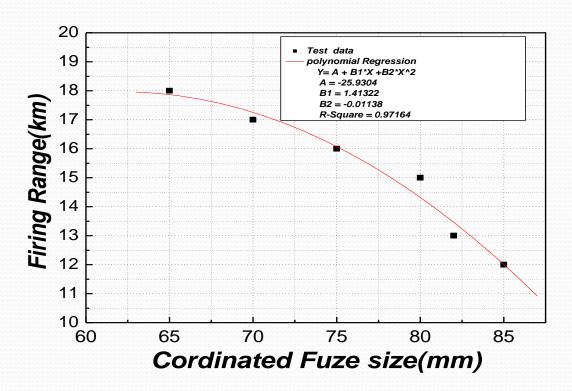

Moment of Inertia

Through Center of Table Through Center of Gravity 23022.15234 kg-cm Sg. 23018.57722 kg-cm Sq.

(A inertia moment)

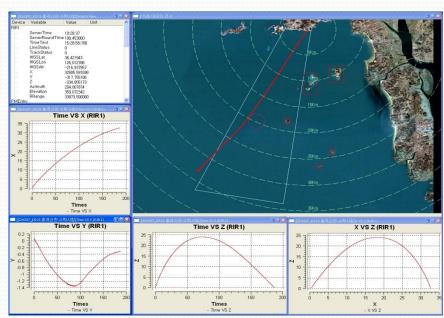
☐ A task for design of RRDF (Recoil Length, 1Cycle time, C'Recoil velocity, Internal pressure)




- ☐ A task for design of RRDF
- (Recoil Length, 1Cycle time, C'Recoil velocity, Internal pressure)

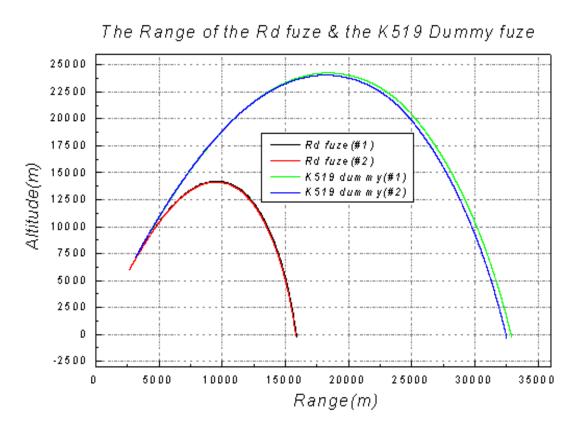
	K519 Dummy Fuze			RRDF(Range Reducing Dummy <u>Fuze</u>).		
Division	Quantity.	Average +	Standard. deviation.	Quantity.	Average	Standard- deviation-
Velocity.	6₽	953.6₽	2.10₽	100	953.6₽	1.80₽
Internal pressure	6.	64,800	780₽	10₽	63,820	900₽
Recoil₄ Length₄	6.	844	1.28	10₽	846	0.94
lcycle. time.	6.	1.61 1.61 \$1.56	0.03	100	1.55 ₊ ①1.59 ⑩1.53	0.02
Counter Recoil Velocity	6.	200	1.07∘	10	21	1.17₀

☐ A stage for development


☐ A stage for development

RRDF dia.(mm)	65	70	75	80	82	85	90
Range Estimate(km)	18	17	16	15	13	12	9.1

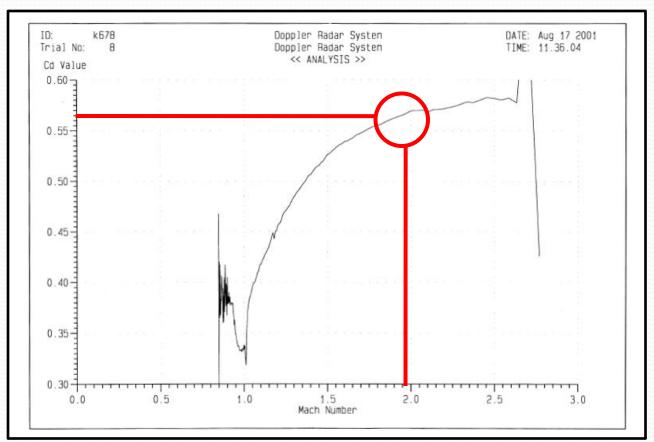
☐ A verification for trajectory



Moving Route(RRDF & K519 dummy fuze)

☐ A verification for trajectory(Range)

Range(RRDF & K519 dummy fuze)


☐ A verification for trajectory

A distribution of range

Division	RRDF₀	155mm K309 projectile. (K519 fuze).	Remarks∘
Average Range. (Deviation).	15,896.3m, (60.56m),	32,957.7m≠ (425.4m)≠	
Deflection.	−119.2m _e (37.51m) _e	−2,522m. (77.21m).	elevation (1208mil). K678charge.
Probable Error	0.255%	0.896‰	

- ☐ A verification for trajectory
- Drag force Coefficient measurement(Doppler Rader : ED 6500)

☐ Results

- We were able to study a RRDF which could reduce the range from 32km to 16km as 50%
- This will enhance the test efficiency and a oil fee which is used for safety ship also will be reduced
- At the elevation of 1208mils for K9 self propelled howitzer,
 A internal pressure, Recoil Length and recoil & Counter recoil were satisfied with the defense specification
- We simulated trajectory, preliminary range, trajectory stability and Drag coefficient with PRODAS
- We also tested RRDF with downsized projectiles and also studied projectile with full model
- By designed RRDF, Recoil & Counter Recoil characteristics, Muzzle velocity, Internal max pressures were proved an identity K519 fuze adapted to 155mm K309(BB ON)projectile

Thanks for you