
 Patricia McNair & Lizabeth Markewicz

Date: October 27, 2011

 Architecture

Decisions and Risk

Management

Copyright © 2010 Raytheon Company. All rights reserved.

Customer Success Is Our Mission is a registered trademark of Raytheon Company.

Architecture Decisions and Risk Management

2

Agenda

 Design Heuristics and Principles

 Evaluating an Architecture

 Evaluating an Architecture with DFSS

3

Design Heuristics and Principles

4

Common Challenges in Architecture

 Architecture is a long-term investment, while projects
often have aggressive short-term goals

 Projects that suffer from schedule compression
implicitly prioritize functional requirements over the non-
functional requirements
 We often under-spend on architecture to meet delivery commitments

5

Common Challenges in Architecture

Reuse is a worthy goal, but cultural and organizational
barriers keep it from achieving its potential

 Cultural barriers:

– “Not-invented-here” syndrome

– Perceived long-term risks of open-source

 Organizational barriers:

– Need a product-line architecture approach built into the organizational
structure to succeed

6

Common Pitfalls in Architecture

 Performance
– Not understanding the relative

priorities between performance
and other quality attributes

 Security
– Not being up to speed on modern

techniques

– Not having an architecture
roadmap for a product

– Not thinking from hacker‟s
perspective

 Usability
– Allowing for some customer

configuration with excessive
parameterization

– Lack of backwards compatibility

 Availability

– Creating single points of failure

– Artificially tight constraints

 Modifiability

– Excessive reliance on third party

products

– Overshooting on reusability

– Not thinking enough about

reusability

– Not investing in refactoring

– Excessive reliance on experts

instead of documentation

 Testability

– Too many fault messages results

in information overload

– Not considering the cost of defect

characterization

7

Good architects can satisfy the functional requirements while meeting non-
functional requirements (i.e. quality attributes). How do they achieve that?

By applying design heuristics and principles such as:

Separation
 Isolates a portion of a system‟s

 functionality into a component

Abstraction
• Is the operation of creating a virtual

machine and hiding its underlying

implementation

Compression :
 Removing layers or interfaces (i.e. the

opposite of Separation)

What Do Good Architects Do?

Resource sharing
 Encapsulation of either data or services

 Sharing among multiple independent

 consumers

Replication

 Operation of replicating a component.

Decomposition

 Separating a large system into smaller

 components

 Part-Whole : each subcomponent

 represents non overlapping portions of

 the functionality

 Is-a : Each subcomponent represents

 a specialization of its parent‟s functionality

8

What Do Good Architects Use?

 The SEI has started collecting a catalog

of proven solutions that help address

the quality attributes – they call these

proven approaches “tactics”.

Tactics = Fundamental design decisions

employed to achieve the quality attributes

Software

Architecture

Specification

Design Decisions

Tactics

Architecture

Patterns

Real World

Abstracted

DFSS Methodologies - Prioritization/Selection Concepts 9

Good Architects Never Stop Learning

 Good architects are continuously learning

 Good architects stay on top of industry trends

 Good architects balance the risk of change against the

value of the new ideas they may apply to a product

 Good architects maintain the architecture documentation

to help the next generation of architects to learn

 Good architects strive to optimize the system behavior,

not the product behavior

– Or, similarly, optimize the product more than the component…

10

Evaluating an Architecture

11

Evaluating an Architecture

 How do you know whether the application of the tactics will really
pull the critical parameters within spec?

– Create executable models of your architecture specification

– Leverage an iterative development lifecycle

– Develop prototypes that implement parts of the architecture

 Somehow, you‟ll want to get some measurable feedback on the

effectiveness of your architecture…

Architecting

Modeling

Iterating

Prototyping Throw-Away

Environment

Deployable-

Quality

Environment

Simulated

Environment

12

Waterfall Lifecycle

Breadth-First Delivery

Phase-based Development

End-of-phase Handoffs

Iterative Lifecycle

Depth-First Delivery

Feature-Set-based Development

Full-lifecycle Collaboration

Reqs/Arch

Design

Code

Build

Test

T
im

e

F
e
a
tu

re

S
e
t

F
e
a

tu
re

S

e
t

F
e
a
tu

re

S
e
t

Design

Code

Build

Test

Reqs/Arch

Evaluating with Iterative Development

Binaries,
Executables

Libraries,
Objects

Modules,
Classes

Models,
Diagrams

13

Evaluating with Prototyping

Outline

Requirements

& CPs

Evolutionary

Design

Delivered

System

Throw-away

Prototype

after design

selection

Design

Attributes

Evolutionary Design

 An initial prototype is produced

 and refined

 Iterate through a number

 of stages to the final system

Throw-away prototyping

 A prototype is produced to help discover attributes associated

 with a concept

 The results are discarded when design selection is completed.

 Resist management's tendency to use/release the throw away

 prototype

For Analyze, Use

Throw-away

techniques

Never change a Throw-away prototype to an Evolutionary Design

Create

Prototyping

14

Prototyping Techniques & Tools

 Prototypes are created as models presented in a format that
is immediately recognizable to the users

 Normally a mock-up is a user interface model that may or
may not be skeletal in terms of functional capability

 Prototypes are created through the use of specification
languages that are directly machine-interpretable. (Flash)

 Prototypes are developed by using a high-level language
that is application oriented;

15

16

Evaluating using Risk Analysis

17

 According to the Defense Acquisition University:

“Risk is a measure of the potential inability to
achieve overall program objectives within defined
cost, schedule and technical constraints”

 ISO Defines Risk as the:

“combination of the probability of an event and its
consequence”

What is a Risk

The Risk Management Process

 Risk Management is a continuous closed loop process that captures new risks
as they emerge, tracks the status of already identified risks, retires risks
through successful actions, or realizes risks through unsuccessful actions

 5 steps - derived from a process developed by the Defense Acquisition
University, and other sources such as Carnegie Mellon‟s Software Engineering
Institute and the Open Systems Initiative.

1. Plan

2. Identify Risks

3. Assess and Prioritize Risks

4. Develop and Implement Risk Handling Approaches

5. Track and Report

Risk Management is an ongoing process, not an event

1

Plan the Risk

Mgmnt Approach

2

ID Risks

3

Assess &

Prioritize

5

Track &

Report
New Project and/or Process Improvement

18

New Risks

4

Risk

Handling

Risk is …the Possibility Of Suffering A Loss, the uncertainty of attaining

a future goal – it hasn‟t happened yet.

Every Risk has Two Elements

• Probability: the chance that an event will occur. If it‟s a sure

 thing, then it‟s a problem (not a risk)

• Consequence: A negative impact on Cost, Schedule, Performance

or a combination of all three…”then”

Probability: The likelihood that

an event will occur (<100%).
Undesirable Consequence: The

negative impact if the risk occurs:

Cost will increase, Schedule will be

delayed or Performance will be

degraded. AKA „Impact Severity‟

Risk
IF Then

Evaluating using Risk Analysis

19

Risk Assessment

 Risk Factor is an evaluation of a Risk‟s probability of occurrence (Pf) and
severity of consequence (Cf) to determine its seriousness

(Pf * Cf) = Rf

High (Rf >0.50)

Moderate (.25 < Rf < 0.5)

Low (Rf <0.25)

{

 RISK FACTOR

(Rf)

HIGH Likely to cause significant serious
disruption of schedule, increase in
cost, or degradation of performance
even with special contractor emphasis
and close government monitoring.

MODERATE Can potentially cause some disruption
of schedule, increase in cost, or
degradation of performance. However,
special contractor emphasis and close
government monitoring will probably be
able to overcome difficulties.

LOW Has little potential to cause disruption
of schedule, increase in cost, or
disruption of performance. Normal
contractor effort and normal
government monitoring will probably be
able to overcome difficulties.

 Risk Factor is used to prioritize the

list of risks

• High, Med, Low

(RED)

(YELLOW)

(GREEN)

20

Rf Action Guidelines Table

P
f
 C

f
 R

f
 Recommendation

1 Low Low Low Do Nothing

2 Medium Low Low Do Nothing

3 High Low Medium
Reduce likelihood or

establish contingency

4 Low Medium Medium
Monitor, take action if

needed

5 Medium Medium Medium Take action if needed

6 High Medium Medium
Take action to reduce

likelihood

7 Low High Medium
Develop cost effective

mitigation plan

8 Medium High High Take action

9 High High High Take action

High

Sig

Mod

Minor

Low

Low Minor Mod Sig High

1

2

3

4

5

7

8

9 6

(GREEN)

(RED)

(YELLOW)

6

21

P
R

O
B

A
B

IL
IT

Y

IMPACT

Evaluating using Risk Analysis

Risk area Risk Prob† Impact† Risk

Rqmt Stability If requirements change, then High X Med = Med

architecture design will slip; fixed need

date prevents meeting users‟ need

Design Perform If throughput rqmts are not Low X Med = Med

achievable with COTS S/W;

then schedule will slip

Rqmt Scale If effort is larger than expected, Med X Low = Low

then will not be able to staff

causing extensive slips

 Risk list

Ranked risk list

• Risk analysis should clarify the possible outcomes and assign
values to the probabilities and impacts

†Prob – High: 1>P>0.7, Med: 0.7>P>0.4, Low: 0.4>P>0.1, None: 0.1>P
 Impact – High: >$1M or slip>3 months, Med: ...

22

Using Tactics To Reduce Risk

Technical

Risks

Tactics

Lower Risks

Quality

Attribute

Analysis

Simulation/

Modeling/

Prototyping

Activities

Critical Parameters
Modeled CP

• Performance

• Modifiability

• Availability

• Security

• Testability

• Usability

• ML Designer

• Monte Carlo Schedule Analysis

• MS Threat Modeling Tool

• Prototyping (e.g. RUP:Initiation)

• Customer Demos

Software

Architecture

Specification

DFSS

Architecture

Risk Analysis

Gaps

Software

Development

23

Kinds of Tactics

 Performance
– Resource Demand

– Resource Management

– Resource Arbitration

 Security
– Resisting Attacks

– Detecting Attacks

– Recovering from an Attack

 Usability
– Separate User Interface

– Support User Initiative

– Support System Initiative

 Availability
– Fault Detection

– Recovery: Preparation and

Repair

– Recovery: Reintroduction

– Prevention

 Modifiability
– Localize Changes

– Prevention of Ripple Effect

– Defer Binding Time

 Testability
– Manage Input/Output

– Internal Monitoring

24

Examples of Tactics

 Performance
– FIFO

– Leaky Bucket

 Security
– Trusted Computing Base

– Authenticate Users

– Authorize Users

 Usability

– Parameter Hiding

– Undo

– Clearly Marked Exits

 Availability
– Trusted Computing Base

– FIFO

– Leaky Bucket

– Garbage Collection

 Modifiability
– Abstract Common Services

– Anticipate Expected Changes

– Runtime Registration

 Testability
– Record/Playback

– Built-in Monitors

25

Example: Trusted Computing Base

 Let‟s say we‟re developing an architecture for a phone.

 The gap analysis of the quality attributes revealed that the security
response of the phone is a critical parameter

– Desired Response: Keep Mean-Time-To-Detect within 5 minutes (i.e. to
detect an attack)

 What design decisions can we make to achieve this?

– Leverage a tactic called “Trusted Computing Base”

 Design decision:

– Choose an architectural boundary, within which, the data is trusted.

– Note that this decision could result in a degradation of performance
response. Tactics will often support one attribute, but at the expense of
another.

DFSS Method & Tool: Security Patterns 26

Example: FIFO

 Let‟s say we‟re developing an architecture for an infrastructure
product that handles call processing.

 The gap analysis of the quality attributes revealed that the
performance response is a critical parameter

– Desired Response: Maintain response/turnaround time of 5 ms for
95% of inbound events.

 What design decisions can we make to achieve this?

– Leverage a tactic called “First In, First Out (FIFO)”

 Design decision:

– Queue events for service in First-in, first-served manner.

– Note that this decision could result in a degradation of availability,
since an individual user that gets buried in the queue will perceive a
fault…

27

Example: Anticipate Expected Changes

 The gap analysis of the quality attributes revealed that the
modifiability response is a critical parameter.

– Desired Response: Changing the audio transport model from circuit-
switch to packet-based routing some time in the future should cost no
more than 5 SM (Staff Months).

 What design decisions can we make to achieve this?

– Leverage tactics called “Anticipate Expected Changes”

 Design decision:

– Keep the transport-specific details isolated in an audio programming
layer, distinct from the call processing control logic.

28

Example: Parameter Hiding

 The gap analysis of the quality attributes revealed that the

usability response is a critical parameter
– Desired Response: Keep the number of configurable parameters below a

threshold value (e.g. 20 fields).

 What design decisions can we make to achieve this?
– Leverage a tactic called “Parameter Hiding”

 Design decision:
– Make a wider set of configurable parameters available to a select user base

(e.g. beta/field personnel) for performance tuning, but not to the general users.

29

Risk Assessment Summary

 Disciplined risk management can be applied to all business

aspects

 Use the process correctly.

– Don‟t skip steps in an ill-founded attempt to speed up the process.

 Train key business personnel as coaches/facilitators

 Hold regular risk reviews

– Work the process through the program, not just at the Risk

Assessment Session.

 Manage available information to:

– Use what we know

– Understand what we don‟t know

– Minimize what we don‟t know we don‟t know!

 Share lessons learned across businesses

30

Evaluating Architecture Using DFSS

Techniques

31

Design Trade Off Analysis Overview

1. Quality Tradeoffs

 Changing an existing product‟s architecture is risky…

2. Design* Tradeoffs

 Prioritization Matrix

 Pugh Matrix

 Monte Carlo analysis

3. Economic Tradeoffs

 Cost Benefit Analysis Model (CBAM)

 Developing architecture roadmaps for a product

* In this context, “Design” refers to

making choices when architecting…

32

Expected challenges from

changes in architecture Expected benefits from

changes in architecture

Quality Tradeoffs

 Changing a legacy architecture is one of the riskiest

development activities that a team can undertake.

 The keys are to:
– Keep the effort under control by making changes in small steps

– Understand the risks that derive from how well you know your
architecture, requirements, and current implementation:

 Risk of insufficient documentation of legacy products

 Risk of insufficient domain experience/understanding

 Risk of insufficient architecture skills on team

– Make the investment that is needed (i.e. long term architecture
phase)

33

Introduction to Design Trade-off Analysis

 The ability to make decisions is a vital skill, both in our
personal and our professional lives.
– What am I going to have for lunch?

– What kind of computer should I buy next?

– What display and keypad should Motorola use to meet a customer‟s need
for a robust design?

 To make a decision you need to know:
– What are the possible choices?

– What criteria distinguish the choices?

 If only one criteria is important, the decision is easy:
– I want the quickest lunch.

– I want the cheapest computer.

34

List Architecture Needs

Architecture Needs QA Type

User needs a response to an inbound call request within

400 ms.

Performance Use Case/AR

Denial of service attacks must be identified and thwarted in

95% of the cases.

Security Use Case/AR

The system must deliver a mean-time-to-failure of 24 hours

or better.

Availability Use Case/AR

The cost to add new system objects to the NM interface

must be less than 5 SM.

Modifiability Use Case/AR

User must be able to configure a new site subsystem within

5 commands.

Usability Use Case/AR

System will need to be able to add Phase 2 security

standards within 18 months.

Security Change/Growth

System must remain operational with traffic bursts of up to

4M users per hour.

Performance Extreme/Stress

35

Prioritize Needs

Architecture Needs QA Type Weight

User needs a response to an inbound call request

within 400 ms.

Performance Use

Case/AR

90

Denial of service attacks must be identified and

thwarted in 95% of the cases.

Security Use

Case/AR

60

The system must deliver a mean-time-to-failure of

24 hours or better.

Availability Use

Case/AR

70

The cost to add new system objects to the NM

interface must be less than 5 SM.

Modifiability Use

Case/AR

30

User must be able to configure a new site

subsystem within 5 commands.

Usability Use

Case/AR

40

System will need to be able to add Phase 2

security standards within 18 months.

Security Change/

Growth

10

System must remain operational with traffic bursts

of up to 4M users per hour.

Performance Extreme/

Stress

80

36

Introduction to Design Tradeoff Analysis

 Usually, there are many choices and many selection criteria. To

select a restaurant for lunch, you might consider:

 *distance *price *variety of entrees

 *cuisine *service *previous experience

 For a computer, price would seldom be the only criteria:

*display *package deal *amount of RAM

*intended use *size *mobile technology

 Note that selection criteria seldom point to a perfect choice, because

the perfect fit may not exist. To get the perfect cuisine, for example,

you might have to drive further.

37

Design Tradeoff Analysis Tools & Methods

38

 Common steps in Design Tradeoff Tools

1. List the choices, options, or alternatives.

2. List the selection criteria (e.g. critical parameters).

3. Score each choice against each criteria.

4. Score the choices against each other.

5. Document which choice scores the highest.

 Design Tradeoff Tools & Methods to be presented:

– Prioritization Matrix

– Pugh Matrix

– Cost Benefit Analysis Method (CBAM)

Design Tradeoff tools help you select & document the best choice.

DFSS Tradeoff Tools

 What do we need in a tradeoff tool to help us make

architecture decisions?

– Analysis support to help us sort through the many choices and

conflicting criteria

– A disciplined approach that helps remove emotion and politics from

the decision-making process

 Consider these examples of architecture decision-making:

1. Choosing between a few alternatives when designing the primary

components (architecture elements) in the product architecture

2. Selecting one among many 3rd party products

3. Choosing between two algorithms for a queuing model

4. Creating an architecture roadmap for a product that prioritizes a set

of architecture changes by economic value

39

Tradeoff Example 1

 Choosing between a few design alternatives:
– Captured as an open issue

 with a few alternative solutions

 with pros and cons for each alternative

 Use a Prioritization Matrix when you need to:
– accommodate both qualitative and quantitative data

– apply criteria weighting

40

Prioritization Matrix

 Prioritization Matrix = a weighted, subjective analysis
– Multiple alternatives

– Success criteria

– Subjective weightings of the criteria

Criteria

Criteria Weightings

Alternatives ScorePositive correlation of alternative to criteria

41

Prioritization Matrix

1. List the alternatives

2. Establish the criteria

3. Weight the criteria (on a 1-10 scale)

Criteria P
e

rf
o

rm
a

n
c
e

D
e

v
e

lo
p

m
e

n
t

C
o

s
t

F
u

tu
re

 M
o

d
if
ia

b
ili

ty

S
e

c
u

ri
ty

Criteria Weightings 7 5 9 4

Alternatives Score

Create a new mobility handler

Extend the current mobility tracker

Use classes in ACE framework

Reuse the iDEN mobility handler

Positive correlation of alternative to criteria

42

Prioritization Matrix

4. Rate each alternative against each criteria (1-10
scale)

5. Rank the alternatives by score

6. If no clear winner emerges, consider adding criteria

Criteria P
e

rf
o

rm
a

n
c
e

D
e

v
e

lo
p

m
e

n
t

C
o

s
t

F
u

tu
re

 M
o

d
if
ia

b
ili

ty

S
e

c
u

ri
ty

Criteria Weightings 7 5 9 4

Alternatives Score

Create a new mobility handler 8 2 6 8 152

Extend the current mobility tracker 5 6 3 3 104

Use classes in ACE framework 3 4 7 9 140

Reuse the iDEN mobility handler 6 5 3 2 102

Positive correlation of alternative to criteria

43

DFSS Tradeoff Example 2

 Selecting one among many 3rd party products:
– Captured as a list of 3rd party offerings

 with costs and benefits for each offering

 Use a Pugh Matrix when you need to:
– do a quick qualitative assessment

– determine if there is an obvious winning concept

– get a quick feel for concept comparison

– down-select from many concepts to the most promising few

44

Pugh Concept Selection

Benefit:

 Identifies the superior concepts

 Aids in hybridization of concepts by identifying strengths & weakness of

each concept

Criteria / Concept 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ease of achieving 105-125 DbA S - + - + + - - - - S +

Ease of achieving 2000-5000Hz S S N + S S + S - - - S +

Resistance to corrosion, erosion & water - - O S - - S - + - - - S

Resistance to vibration, shock & acceleration D S - T S - S - - S - - - -

Resistance to temperature A S - S - - - S S - - S S

Rsponse time T S - + - - - - S - - - -

Complexity: number of stages U - + E S + + - - - + + - -

Power consumption M - - V + - - + - - - - S +

Ease of maintenance S + A + + + - - S + + S -

Weight - - L + - - - S - - - - +

Size - - U S - - - - - - - - -

Number of parts S S A + S S - - + - - S -

Life in service S - T + - S - - - - - - -

Manufacturing cost - S E - + + - - S - - - -

Ease of installation S S D S S + - S - - - S -

Shelf life S S S S - S S S S S S

0

6

10

2

9

5

8

1

7

3

9

4

5

7

4

3

12

1

0

11

5

2

8

6

2

13

1

2

13

1

0

8

8

4

9

3

 +

 -

 S

Summary: compares and selects best ideas & concepts using a simple

system of “better than”, “worse than”, and “same” scoring. Identifies best

features from each concept and creates hybridized solutions.

Pugh Concept Selection Matrix

45

Pugh Concept Evaluation Process

1. Prepare all concepts to similar level of detail

2. Define concept evaluation criteria

3. Construct evaluation matrix

4. Select datum to evaluate concepts against

5. Compare each concept against the datum

6. Analyze concepts and create new superior hybrid

concepts

7. Eliminate weak concepts from evaluation matrix

Prepare

Evaluate

Concepts

Hybridize

Concepts

Superior

Concept?

End

No

Yes

8. Confirm superior concept

46

Select the Datum – Step 1

1. Choose one of the alternatives to be the straw man, or
“datum”
 Rather than comparing each concept against the others, all concepts

are compared against the datum

─ The datum “takes the heat” thus rendering a focus for all other
concepts to beat

 Datum for Initial Evaluation

− Benchmarked best-in-class design in the context of your product
requirements and competitive environment

− If no best-in-class design exists, the datum is the concept that the
team believes is the strongest among the alternatives

 Datum for Subsequent Evaluation Iterations

− Select the strongest concept that is present in the matrix (either the
initial datum or a concept that has emerged as stronger)

47

Select the Datum – Step 2 & 3

2. Systematically compare each concept against the datum

 For each evaluation criteria, rate the concept as:

+ Better than, less than, less prone to, easier than, etc.,

relative to the datum

- Worst than, more expensive than, more complex than, more

prone to than, etc., relative to the datum

S Same as the datum

3. For each concept, sum the +, - and s ratings

48

Compare Each Concept Against The Datum

1 2 3 4 5 N

Evaluation Criteria #1 s - + s

Evaluation Criteria #2 + - - s

Evaluation Criteria #3 D + + + s

 A - - s -

 T - - s -

 U + - + +

Evaluation Criteria #N M + - + +

∑+ 4 2 4 2

∑- 2 6 1 2

∑s 1 0 2 3

Product Concepts

49

DFSS Tradeoff Example 3

 Choosing between two algorithms for a queuing model:

– Two alternative approaches to handling inter-process communications

within the product‟s concurrency model

 each algorithm has different advantages and weaknesses

 there is variability on the traffic patterns

 the requirements are stated as a range of acceptable utilization %

 Use Monte Carlo Analysis* when you need to:

– handle variability in the inputs

– do sophisticated statistical modeling

– determine whether the results fall within acceptable ranges

*[Refer to “Applying DFSS to Software and Hardware Systems, Maass & McNair,

Prentice-Hall, 2009]

50

Summary of Architecture Evaluation Techniques

 A comprehensive set of scenarios was presented to assist in

a complete evaluation of the architecture.

 Methods were defined to help measure the architecture so

an evaluation could be performed. Using capability flow up,

flow down along with simulation or models provides a very

powerful metrics based evaluation technique.

51

Patricia McNair

IDS Deputy Director of Six Sigma

Raytheon Co.

978-858-5456

Email: Patricia.D.Mcnair@raytheon.com

Liz Markewicz

Risk Manager

Raytheon Co.

978.470.9923

Email:mmarkewl@raytheon.com

11/4/2011 52

