Vector-Based Metrics for Assessing Technology Maturity

Gerard E. Sleefe, Ph.D.

Senior Technical Deputy to the Chief Engineer Sandia National Laboratories Albuquerque, NM, USA

Contact: 505-844-2195; gesleef@sandia.gov

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: 2010-0238 P

Presentation Outline

- Background and Motivation
- Scalar Metrics for Technology Maturity
- Introduction to Vector-Based Metrics
- Systems Engineering Example
- Technology Maturation Example
- Conclusion and Recommendations

Quiz Question

 A car is traveling at 50 mph, and a truck is travelling at 60 mph.

When and where will they meet?

Quiz Question #2

A Next-Generation
 Microprocessor is currently being prototyped (TRL=4, MRL=3).

 When will the new microprocessor hit the market (TRL=9, MRL=9)?

Scalar Technology Metrics

Technology Readiness Levels (TRL)

RETURN ON INVESTMENT (ROI

Manufacturing Readiness Levels (MRL)

System Readiness Levels (SRL)

TIME-TO-MARKET (TTM)

*For more technology metrics, see for example E. Geisler, 1999

Intellectual Property (papers, patents)

- Scalar Metrics play an important role in technology management, acquisition, systems engineering
- But: they measure only the magnitude of the current state
- And: they usually do not have a mathematical basis for performing systems engineering calculations

Vector-Based Metrics

- Measure the Magnitude <u>AND</u> Direction
- Enables Vector Mathematics between Metrics

Vector-based Technology Metrics Some proposed vector metrics

Technology Maturation Rate (TMR):

$$\overrightarrow{TMR}(t) = \frac{d}{dt}TRL(t)$$
TRL = Technology Readiness Levels

Technology Profit Margin (TPM):

$$\overrightarrow{TPM}(t) = MV(t) - I(t)$$

MV = Market Value of the technology I = Investment in the technology

Systems Engineering Example

Systems Aggregation of TRL's

- TRL of Sub-Sys #1 = min (TRL4, TRL3, TRL5) = TRL3
- TRL of Sub-Sys #2 = min (TRL8, TRL6) = TRL6

TRL of the System = min (TRL3, TRL6) = <u>TRL3</u>

TRL's alone do not give full insight into system-level maturity

Vector Analysis of Systems

$$\overrightarrow{TMR_1}(t) = \overrightarrow{A}(t) + \overrightarrow{B}(t) + \overrightarrow{C}(t)$$

Technology Maturation Study

- Monitor an actual product development effort over the course of 18 months
 - Measure technology metrics throughout, and make informed decisions using technology vector analysis

COTS Acceleration Switch

MEMS Acceleration Switch

Acknowledgement: Polosky and Garcia, 2006

Experimental Observables

- Traditional project management metrics
 - Cost, schedule, and technical requirements

- Quantitative technology metrics
 - Technology Readiness Metrics (TRL, MRL, TMR, etc.)
 - Product development cycle time (months)
 - Prototype production yield (%)

Experimental Results: *MEMS Technology Development Progression*

Experimental Results:

MEMS Development and Production Metrics

MEMS reached TRL=7 after 18 months

COTS Challenges

Acceleration Sensitivity deviates from manufacturer's spec

Part Failed due to Metal Shard

Technology Maturation Vector Analysis

Vector-based Metrics Complement Traditional Technology Management Tools

Summary

- Vector-based metrics can provide additional technology management insight:
 - Enable the assessment of both magnitude and direction
 - Provide a mathematical framework for system analytics
- Recommend that Maturation Rates (vector quantity) be used to complement the TRL and MRL scales
- Follow-on studies recommended:
 - To evaluate effectiveness of vector-based metrics
 - To establish a technology maturation database
 - TRL, MRL, Vectors, etc. versus technology categories
 - would support predictive modeling of technology maturation

Backups

TRL History: MEMS vs COTS

