

Modeling and Simulation for Affordable System Acquisition

presented at

NDIA 14th Annual Systems Engineering Conference

October 25-28, 2010

Deganit Armon
David Peterson
Chuck Kondrack
Advatech Pacific Inc.

The problem

- Major Government acquisition programs are
 - Over budget
 - Behind schedule
 - Fail to meet performance objectives

Causes

- Engineering/design issues
- Schedule issues
- Quantity changes
- Changing assumptions and requirements
- Complex acquisition processes and methodologies

Advanced SEAL Delivery System

- 1994 contract award
 - \$70M
 - First boat delivery planned for July 1997
- 2003 first unit
 - Development costs at \$340M
 - Did not meet all operational requirements
 - Accepted by Navy into operational use
 - Significant reliability and performance issues
- 2006 costs reach \$885M
 - R&D, procurement, construction, O&M, military personnel
- 2009 program abandoned after fire damage to only unit

Affordable Systems Acquisition

Success depends on

A sound business case

- Firm requirements
- Mature technologies
- Knowledge-based acquisition strategy
- Realistic cost and schedule estimates
- Full life cycle considerations
- Sufficient funding

Early systems engineering

- Earlier evaluation of the factors that are contributing to cost growth
- Continuous systems engineering analysis

Effective contracting strategy

Beyond the scope of this talk

Total system design and cost

- Grounded in sound technical knowledge
- Collaborative information technologies
- Adaptable software frameworks
- Knowledge databases

Enhances

- System interoperability
- Trade studies and rapid alternative evaluations
- Design productivity
- Acquisition decision management

Used to develop and maintain a realistic total systems view for

- Systems engineers
- Program managers
- Senior acquisition managers

Integrated System and Cost Modeling

Advatech Pacific, Inc. integrated systems experience

- Multiple integration projects since 2001
 - Hypersonic vehicles (ONR)
 - Launch vehicles (AFRL/RZST)
 - Solid, liquid and hybrid motors
 - Common Aero Vehicles (CAV) for Prompt Global Strike
 - Cost and risk model
 - ConOps
 - Space vehicles (AFRL/RVES)
 - Space mission design
 - Space radiation environment
 - Space vehicle cost
 - Rotor blade design (Army)
 - Air launch designs

Traditional Design Approach

Integrated Design Approach

Integrated tool development requires

- Domain knowledge
- Understanding of CONOPS, engineering, cost, schedule and other tools
 - Integrated "as-is"
 - Enhanced with added capabilities
- Understanding the data flow
 - Without integrated tools, this is done via
 - Email
 - File transfer
 - "Sneakernet"
- Human engineering
 - Coaxing the process out of domain experts

Integrated projects had much in common

- Common philosophy integrated engineering tools
- Common methodology software framework
- Related domains space vehicles, launch vehicles
- Overlapping areas of modeling design, cost, ConOps
- Overlapping functionality trade study tools

Realization dawned

Individual tools could be consolidated into one tool suite!

ISCM Tool Suite Vision

Modeling, Simulation and Analysis (MS&A) software

- Complete view of the total life-cycle of the system
 - Performance
 - Operations & Maintenance
 - Cost
 - Schedule
 - Risk assessment
- Collaborative trade study environment
 - Develop early and use throughout the acquisition process
- Current focus on
 - Spacecraft systems
 - Launch vehicles
 - Strategic missiles
- Expanding to other domains

ISCM Process Flow

Different frameworks used for different projects

- Phoenix ModelCenter
- TechnoSoft Adaptive Modeling Language (AML)
- Simulia iSIGHT

Each has strengths and weaknesses

All have licensing costs

Alternative

- Develop multi-disciplinary architecture for integrated system
- Service oriented architecture (SOA)
- Open source software

Architecture View

- Intuitive interface
- Model tree on left
 - Data flows from one model to the next
- Work area on right
 - For selected model
 - Input fields
 - Calculated values
 - Editable defaults
 - Parameters selection for trade studies
- Models and trade studies can be saved to knowledge database for future reference

Additional modules can be added as necessary

- Identify input and output
- Identify interaction with other modules
- Define business logic for interaction
- Create dynamic user interface
- V&V

Essentially a computer programming task

- Requires understanding of model building
- Java code

Advantages of Integrated MS&A

- Rigorous systems engineering
 - Traceable
 - Repeatable
 - Robust
- Trade studies looking at systems alternatives
- Rapid identification of system and subsystem design concepts that meet mission requirements
 - Limit late design changes
- Identify technologies and areas of investments
- Identify risks early
 - Proactive mitigation

Application – Business Case

- Supported a study to determine whether to invest in a new technology
- ISCM was used to determined costs of several alternative scenarios
- Study performed in several iterations over six weeks
 - Alternative designs
 - Cost and schedules
 - Cost breakdowns (e.g. recurring vs. non-recurring)
- Cost estimates used as input to a Return on Investment (ROI) analysis

Integrated MS&A Support for Affordable Systems Acquisition

- Links system performance with total Life Cycle Cost estimates
- Provides trade study traceability so that process is repeatable
- Addresses the principal cost/affordability drivers
 - System design and complexity
 - Mission requirements and constraints
 - Technology maturity and cost growth
 - Design, Development, Test and Evaluation (DDT&E) concepts
 - Operations and Sustainment (O&S) concepts
- Addresses key aspects of a system acquisition and management
 - Planning & Development
 - Technology (existing and proposed)
 - Engineering, Design & Manufacturing
 - Production
 - Operations & Sustainment
 - Disposal
- Level of risk identified with each estimate

Early Development Planning Leads to Affordable Systems

Presented by: Mr. Charles Kondrack

Track 4 – Early Systems Engineering

Right after this talk at 11:25 in Mission I

