
© 2011 Systems and Proposal Engineering Company. All Rights Reserved

Lifecycle Modeling – Application to
Architecture Development

Steven H. Dam, Ph.D., ESEP
President, SPEC Innovations
571-485-7805
Steven.dam@specinnovations.com

October 27, 2011

1

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

Overview

 Why a New Language?

 Lifecycle Modeling Language Overview

 Use of LML for Architecture to Systems

Design Specification

 Use of LML in Test and Evaluation

 Use of LML in Operations and Support

 Summary

2

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

WHY A NEW LANGUAGE?

3

We already have SysML … what else do
you need!

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

State of Current “Languages”

• In the past decade, the Unified Modeling
Language (UML) and now the profile Systems
Modeling Language (SySML) have dominated
the discussion

• Why?
– Perception that software is “the problem”
– Hence need for an “object” approach

• SysML was designed to relate systems
thinking to software development, thus
improving communication between systems
engineers (SE) and software developers

4

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

Why Objects Are Not the Answer

• Although SysML may improve the
communication of design between SEs and
the software developers it does not
communicate well to anyone else
– No other discipline in the lifecycle uses object

oriented design and analysis extensively
– Users in particular have little interest/acceptance

of this technique
– Software developers who have adopted Agile

programming techniques want functional
requirements (and resent SEs trying to write
software)

5

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

So What Do We Do?

• Recognize that our primary job as SEs is
to communicate between all stakeholders
in the lifecycle

• Be prepared to translate between all the
disciplines

• Reduce complexity in our language to
facilitate communication

6

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

LIFECYCLE MODELING

LANGUAGE (LML) OVERVIEW

7

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

The Lifecycle

Architecture
 Development

System
Design

Hardware/Software
Acquisition

Integration
and Test

Operational
T&E and
Transition

Future Operations
and Maintenance

Demolition
and Disposal

Program
Management

Current Operations
and Maintenance

8

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

Lifecycle Modeling Language (LML)

• LML combines the logical constructs with
an ontology to capture information
– SysML – mainly constructs – limited ontology

– DoDAF Metamodel 2.0 (DM2) ontology only

• LML simplifies both the “constructs” and
ontology to make them more complete,
yet easier to use

• Goal: A language that works across the
full lifecycle

9

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

LML Ontology* Overview

• Taxonomy**:
– 12 primary element classes
– Many types of each element class

• Action (types = Function, Activity, Task, etc.)

• Relationships: almost all classes related to
each other and themselves with consistent
words
– Asset performs Action/Action performed by

Asset
– Hierarchies: decomposed by/decomposes
– Peer-to-Peer: related to/relates

*Ontology = Taxonomy +
relationships among terms and
concepts
** Taxonomy = Collection of
standardized, defined terms or
concepts

10

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

LML Taxonomy Simplifies Classes

• Technical

– Action

– Artifact

– Asset

– Characteristic

– Input/Output

– Link

– Statement

• Programmatic/Technical

– Cost

– Issue

– Location
• Physical, Orbital, Virtual

– Risk

– Time
• Duration, Timeframe,

Point-in-Time

11

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

LML Relationships Provide Linkage
Needed Between the Classes

captures

decomposed by consumes generates causes causes

related to preformed by receives resolves mitigates

produces resolves

decomposed by specified by incurs causes defines protocol for causes based on

related to referenced by referenced by referenced by referenced by mitigates referenced by

captured by

consumed by decomposed by causes causes

performs orbited by resolves mitigates

produced by related to responds to resolves

references decomposed by incurs causes causes based on

specifies related to specifies resolves mitigates specifies

resolves

causes

incurred by incurred by decomposed by causes incurred by cased on

references specified by related to incurred by resolves incurred by

resolves mitigates

generated by decomposed by causes causes

received by related to resolves mitigates

resolves

causes

caused by caused by caused by caused by caused by caused by decomposed by caused by located at caused by caused by date resolved by

resolved by references resolved by resolved by incurs resolved by related to resolved by mitigates resolved by decision due

resolved by responded by resolved by resolved by causes occurs

defined protocol by causes decomposed by causes

references resolves related to mitigates

resolves

decomposed by locates based on

related to mitigates locates

caused by caused by causes

caused by mitigated by caused by caused by incurs caused by caused by caused by located at decomposed by caused by

mitigated by references mitigated by mitigated by mitigated by mitigated by causes mitigated by mitigated by related to mitigated by

resolved by resolved by resolved by resolved by resolved by resolved by resolved by resolved by resolved by resolved by

causes

basis of basis of basis of causes basis of located at decomposed by

references specified incurs resolves located at mitigates related to

sourced by resolves

date resolves occurred by decomposed by

decided by mitigates related to

occurred by

occurs

occurs

-

specifies located at

ISSUE

INPUT/OUTPUT references - specified by incurs transferred by located at based on

incurred by located at

RISK STATEMENT

based on

CHARACTERISTIC

specifies specifies

occurs

ASSET references specified by incurs connected by located at based on occurs

ARTIFACT referenced by referenced by referenced by

CHARACTERISTIC

ACTION ARTIFACT ASSET COST INPUT/OUTPUT

references specified by incurs -

ISSUE LINK

located at

specifies

LOCATION

ACTION

LINK - connects to specified by incurs transfers located at

located at

COST incurred by incurred by incurred by

TIME

ACTION ARTIFACT ASSET STATEMENT

locates locates locates

RISK

STATEMENT basis of basis of -

RISK

STATEMENT

TIME

occurs

COST INPUT/OUTPUT ISSUE LINK RISK

locates locates locates locates

basis of occurs

ACTION

ARTIFACT

ASSET

CHARACTERISTIC

COST

INPUT/OUTPUT

ISSUE

LINK

LOCATION

CHARACTERISTIC

taken by

occurred by

delays

occurred by

LOCATION

LOCATION

takes

occurs

delayed by

occurs

TIME

TIME

occurred by

occurs

occurs

occurred by occurred by occurred by occurred by occurred by occurred by

locates

based on

• decomposed
by/decomposes

• orbited by/orbits
• related to/relates

12

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

LML Logic

No constructs – only special
types of Actions

Action A Action B

Action A
 (Decision Point)

Action B

Action C

Condition 1

Condition 2

Action A

Action B

LOOP (or Iterate)

Action A

Action C
 (Synch Point)

Range

Range (e.g.)
1 to n (iterate)

Until r < z (loop)

PARALLEL (AND)

SEQUENTIAL

DECISION POINT (OR)

A
N

D

O
R

Action C
 (Exit Criteria) L

O
O

P

13

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

O
R

LML Action Diagram Captures
Behavior

Request
Service
Action

Element in
Parallel

Action

Start End

Trigger

A
N

D
 Data 2

Synchronize
Information?

Action

1.2

1.3

1.7

Data

Data 1

Serial
Element

Action

1.1
Element in

Loop
Action

1.6

Loop
3 times

Data

External Input

Data

External
Output

Data

Data 3

L
O

O
P

Exit Criteria
Action

1.5

Element in
Decision

Action

1.4

14

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

LML Physical Block Diagram

Sensor Systems
Operator

P
.5

.2
.1

Asset (Human)

I.1.3 Operator-Sensor Platform Interface
Sensor Platform

P
.5

.2
.2

Asset (System)

connected with/
connects

Sensor System
Memory

R
.5

.2
.2

.1

Asset (Resource)

used by/uses

• capacity (10 Mbits/sec)
• Latency (100 millisec)

• maximum quantity (6 Gbytes)
• minimum quantity (10 Kbytes)

15

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

LML Combined Physical Behavior
Diagram Enables Instances and
Clones

16

Sensor Systems
Operator

P
.5

.2
.1

Asset (Human)

I.1.3 Operator-Sensor Platform Interface

connected with/
connects

Sensor Platform
A(2)

P
.5

.2
.2

Asset (System)

Asset (Resource)

Sensor Platform
A(3)

P
.5

.2
.2

Asset (System)

Asset (Resource)

Sensor Platform
A(1)

P
.5

.2
.2

Asset (System)

Asset (Resource) C
lo

n
es

 p
ro

vi
d

e
m

u
lt

ip
le

 in
st

an
ce

s
o

f
an

 A
ss

et
 f

o
r

u
se

 in
 s

im
u

la
ti

o
n

A.3.1

Action (System Function)

A.3.2

Sense Targets

A.3.1

Action (System Function)

A.3.1

Deploy Sensor

input to/
input from

input to/
input from

Deploy
Command

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

LML Summary

• LML contains the basic technical and
programmatic classes needed for the lifecycle

• LML defines the Action Diagram to enable better
definition of logic as functional requirements

• LML uses Physical Diagram to provide for
abstraction, instances, and clones, thus
simplifying physical models

• LML provides the “80% solution”
– It can be extended to meet specific needs (e.g.

adding Question and Answer classes for a survey
tool that feeds information into the modeling)

17

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

USE OF LML FOR ARCHITECTURE

TO SYSTEMS DESIGN

SPECIFICATION

18

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

14. Provide Options

Architecture Development Process
and Products

19

5. Develop the Operational Context Diagram

15. Conduct Trade-off Analyses

6. Develop Operational Scenarios

1. Capture and Analyze Related Artifacts

4. Capture Constraints

3. Identify Existing/Planned Systems

2. Identify Assumptions

7. Derive Functional Behavior

8. Derive Assets

10. Prepare Interface Diagrams

12. Perform Dynamic Analysis

11. Define Resources, Error Detection & Recovery

13. Develop Operational Demonstration Master Plan

16. Generate Operational and System Architecture Graphics, Briefings and Reports

Requirements Analysis

Functional Analysis

Synthesis

System Analysis
and Control

This implementation of the middle-out approach has been proven on a variety of architecture projects

AV-1

AV-2

OV-1

OV-2
OV-3

OV-4

OV-5

OV-6

9. Allocate Actions to Assets
SV-1

SV-2
SV-3

SV-4

SV-5 SV-6

SV-7

SV-8 SV-9

SV-10

StdV-1 StdV-2

AV-1
Draft DIV-2

DIV-3

DIV-1 CV-1
CV-2

CV-3

CV-4

CV-5
CV-6

CV-7

PV-2
PV-3

PV-1

CONOPS

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

Key Architecture Products

• DoDAF Diagrams
• Concept of Operations (CONOPS)
• Functional Specifications of Hardware and

Software
• Early Design Validation Through Modeling

and Simulation
• Test and Evaluation Plans (for T&E)
• Processes and Procedures (for Operations

and Support, as well as inputs to training
plans)

20

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

USE OF LML IN TEST AND

EVALUATION

21

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

Coming Up the Vee

I&V Planning

Integration

Verification

D
es

ig
n

 M
o

n
it

o
ri

n
g

22

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

Measure of Performance (MOP) View

23

Measure of

Performance (MOP)
Type = MOP

MOP 1.1

System
Type = System

System

MOP Test Result
Type = MOP Occurrence

MOP 1.1 [System

(SW1/HW1)]

MOP Test Result
Type = MOP Occurrence

MOP 1.1 [System

(SW2/HW2)]

MOP Test Result
Type = MOP Occurrence

MOP 1.1 [System

(SW3/HW3)]

System Instantiation
Type = System Instantiation

System (SW1/HW1)

System Instantiation
Type = System Instantiation

System (SW2/HW2)

System Instantiation
Type = System Instantiation

System (SW3/HW3)

instantiates /

instantiated by

instantiates /

instantiated by

specifies /

specified by

Characteristics

Assets

1:M

1:M

1:M

specifies /

specified by

specifies /

specified by
1:1 1:1 1:1

Measure of

Effectiveness (MOE)
Type = MOE

MOE 1

decomposed by /

decomposes

instantiates /

instantiated by

instantiates /

instantiated by

1:1 1:1 1:1

System Function
Type = System Function

Function

tests /

tested by

allocated to /

performs

Actions

1:1

1:M

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

USE OF LML IN OPERATIONS AND

SUPPORT

24

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

LML Support Operations and
Support Analyses

• Process Modeling

• Simulation of Operations

• Training Processes and Procedures

• Operations Manuals

• Logistics Analysis

25

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

SUMMARY

26

© 2011 Systems and Proposal Engineering Company. All Rights Reserved

LML Bottom-Line
• LML provides a simple, complete language

for all stakeholders, not just software
developers
– SysML/UML focus on software developers only

• Use of Actions instead of constructs to
capture command and control functions
explicitly

• Translation from LML to other languages
now feasible

• Support for entire lifecycle

