

Net Centric Training for Legacy Aircraft

Sly Knight

Georgia Tech Research Institute - Electronic Systems Laboratory

October 27, 2011 – NDIA Systems Engineering Conference

Virtual Training

- Creates a realistic threat environment in conjunction with or without an open-air range
- Software stimulates on-board systems
 - Based on real threat models
 - Activates when aircraft is in range
 - Helps test operational interfaces among federated systems
- Mission planning currently done pre-flight
 - Not always configurable in flight
 - ☐ Each aircraft gets the same experience

Net Centric Aircraft Training Capabilities

Team Oriented Training with Smart Pseudo-Threats

Remotely Commanded Training

More Realistic Air-to-Air Training

Requirements

Capable Mission Computer

Direct Onboard Systems to Simulate Real Threats in the Cockpit

Sufficient Control and Resources to Accomplish the Task

Datalink

Sufficient Bandwidth for an Additional Message

OR

Messages that can be Repurposed

Mission Computer

Sufficient Control Over Subsystems Radars, Displays, Warning Systems and Audio

Training Mode Capable

Coordinated System Engineering Effort

Capability to
Simulate
Realistic Threats

Threat Models

Mission Data

Integration with Datalink

Datalink Message

New Message One Larger Multi-Purpose Message or Compact, Task-Specific Messages

Requires Approval by Datalink Authority

OR

Repurposing Existing Messages

Must Distinguish Training

Approval to Use Message in Unintended Way

Possibilities

Team Oriented Training with Smart Pseudo-Threats

Remote Command of Training Scenarios from Ground or Air

Simulated "Red Guy" Air-to-Air Training

Team Oriented Training

Team Oriented Training with Smart Pseudo-Threats

Remote Command of Training Scenarios from Ground or Air

Simulated "Red Guy" Air-to-Air Training

Team Oriented Training

- Pseudo-threats seemingly coordinate random attacks via datalink communication
 - Smart pseudo-threats
 - Realistic targeting
- Countermeasures reactions
- Susceptible to counter attacks

^{*}Georgia Tech Research Institute published a paper on this concept and presented it at I/ITSEC in 2005. It is titled "Virtual Electronic Combat Training System (VECTS)."

Team Oriented Training

Message Considerations

- Pre-planned mission
- Randomized engagements
- Engagement status
- On-board threat modeling

System Engineering Hurdles

- Syncing each aircraft's mission computer
- Message bandwidth

Making Pseudo-Threats Aware

EXAMPLE IMPLEMENTATION

Requirement

• Random pseudo-threat engagement of one aircraft in range

Solution

- Get aircraft to agree on a random starting number
- Use this number to feed a program that controls the training scenario
- Program feeds number into pseudo-random number generator recursively to generate tables of engagement priorities
- Aircraft constantly report engagement status for each threat
- Resynchronize starting number and restart scenario as needed

Team Oriented Training with Smart Pseudo-Threats

Remote Command of Training Scenarios from Ground or Air

Simulated "Red Guy" Air-to-Air Training

Ground station engages aircraft with pseudo-threats Live, virtual, constructive (LVC) threat simulations Real-time feedback Facilitates drills Relevant combat briefing tool Ground station runs models and countermeasures analysis Higher processing power = high fidelity end-game models Less processing required by aircraft systems

No pre-planned mission loading required

^{*}Georgia Tech Research Institute and Air Force Research Laboratory published a paper on this concept and presented it at I/ITSEC in 2007. It is titled "Networked Electronic Warfare Training System (NEWTS)."

Message Considerations

- Detailed threat status
 - Radar modes, operating parametrics
 - Raw data or lookup tables
- Countermeasures timing, accounting for latency

System Engineering Hurdles

- Ground station threat modeling
- Intuitive command software
- Computer to aircraft datalink interface

- Determine the information that will be passed
 - Develop a system level plan based on project requirements
 - Document the details of the datalink message and storyboard use cases
- Development of the command software
 - School the developers on the end use of their product
 - Review the interface from an end user perspective throughout the project
 - Bring in real users to test the software's usability

Team Oriented Training with Smart Pseudo-Threats

Remote Command of Training Scenarios from Ground or Air

Simulated "Red Guy" Air-to-Air Training

- Assign squadron pilots to be the enemy
- Convert friendly radar signals to real aggressor radars
- Hide friendly datalink tracks that "red" aircraft would not send
- Simulate weapon effectiveness
 - Calculate missile kills
 - Track gun damage
- Keep score

Message Considerations

- Initial team assignment
- Weapon damage
- Countermeasures timing, accounting for latency

System Engineering Hurdles

- Provide safe training environment
- Powerful interface with displays
- On-board end-game analysis

- Coordination of mission computer developers and display controller developers
 - Maintain a clear description of how the system will perform
 - Make this description accessible to both parties
 - Communicate regularly
- Maintain safety of flight requirements
 - Coordinate with pilots and flight test personnel to ensure system will not pose any flight dangers
 - Build in training mode awareness that does not interfere with the purpose of the training

Summary

- Given the following
 - ☐ Mission computer in control of the EW and display systems
 - Datalink connection (Air-to-Air and/or Air-to-Ground)
- These are possible
 - More realistic dog-fight training
 - LVC training orchestration from a command center
 - Pseudo-threats that realistically target aircraft selectively and respond to countermeasures

Questions?

Sly Knight

Georgia Tech Research Institute

Phone: 404-407-8403

Email: sly.knight@gtri.gatech.edu