Semantic Interoperability Levels for Comparing Use Cases

Describing Value-Add of Semantic Web Design Using a Practical Interoperability Scale

Implementing W3C Semantic Web Standards for Interoperability

Robert Kruse President FacetApp LLC rkruse@facetapp.com

Oct. 26, 2011

Problem

Articulating the Interoperability Value Proposition.

Getting Funded.

Business IT Gap

Business

IT

Business Expert's Perspective: Processes

Process Implementation

IT Implementation Perspective

This Benefits You

Business

- For: Business Decision Makers
- Who Need: Tool that Gets the IT Team to Put the Interop Benefits in a Clear, Concise Presentation.

- For: ClOs, IT Architects, IT Project Managers
- Who Have: Interoperability Project or Technology
- Who Need: Means to Communicate Interoperability
 Value Prop to Business Decision Makers
- **So they can**: Get Funded, Get Paid, Solve Expensive Interoperability Problems.

A Current Method

"Measure for Merit for Coalition Interoperability"

Interoperability Model: A composite of Materiel & Non-materiel solutions

Adapted from "Beyond Technical Interoperability – Introducing a Reference Model for Measure of Merit for Coalition Interoperability'. Dr. Andreas Tolk, VMASC, ODU. 8th CCRTS, NDU, June 2003

Comparing Use Cases

Situation: Legal Contract Management System

Client Situation

Managing Data & Rule Complexity

Client Data Alignment Problem

Goal: Understand Situation & Context

Rules Drive the Business

The Ability to Manage Rule Complexity Determines Success or Failure.
Risk vs. Loss.

Business Rules Drive Integration Costs

Figure 1: A Medical Claim Rule Set

Source: Celent Analysis

Rule Change is the Norm

Rules Become more Complex and Change More Frequently

Source: Gartner, Pega

Rules Enable Unified Workflows

Answers these Questions:

What needs to be done?
Who is supposed to be doing it?
Who is approved to share work in what step?

Solution

Interoperability for: Rules, Workflows, Data

based on W3C Semantic Web Standards

W35 Interoperability Drives Value

Connect Industries & Governments

HealthCare

Insurance

eCommerce

Contractor Materials

Solution Strategy

Step I: Specify the UI Specs & Data

Mockup Screens Identify Workflows, Business Rules, Data Model Import & Verify Data Preserving Original Semantics

Step 2: Build a Common Knowledge Model

Connect Classes, Infer Data Structure Import Instance Data, Browse Build Screens Adding Rules & Workflows to complete the App

Step 3: Access Your Connected Knowledge

Facet Browse Data with Speed Navigate Workflows Access Remote Data, Enter New Data

Step 4: Extend with Confidence

Accounting, Billing, Business Dev., IT, Brokers, Policies, SalesForce Knowledge Model Grows to be Richer, More Connected Access Data From Everywhere

Get a Common Knowledge Model

Connect Classes Add Rules Import Instance Data

Common Knowledge Model

Connect Knowledge.

W3C Semantic Standards Enable Very High Interoperability

Interoperability Comparison Tool

Client System: Before vs. After

Interoperability vs. Approach/Effort

App. Examples:

NetRate via CITRIX

CA CSLB Site

ACORD Form (Fax)

Worksheet WORD

Unstructured eMail

Great Plains Accounting
Oracle DocuMaker
Vertafore Policy Issuance (VPI)
Vertafore ImageRight (PDF)
USF: CGI INSideOut
SAP Data Integrator
Appulate Server
ACORD Form (XML)
Vertafore AMS 360
Applied Sys TAM/EPIC

SalesForce.com

Semantic Platform

Minutes / Hours

#1: Interoperability by Step

#1: Interoperability by Step

Interoperability Solutions

Join: NCOIC.org

Interoperability Rules.

Federal Data & Apps

DoD, DoE, DHS

NetCentric (Semantic) Interoperability Industry Meets Govt

Build Your Knowledge Ecosystem

Government Communities Your Communities

Learn More

Visit: NCOIC.org

SCOPE Working Group

Backups

What are W3C Semantic Web standards?

What Are Semantic Web Standards?

A "Web of Connected Data" where computers are able to automate more intelligent decisions for you.

The **Semantic Web** is an evolving development of the <u>World Wide Web</u> in which the meaning (<u>semantics</u>) of information and services on the web is defined, making it possible for the web to "understand" and satisfy the requests of people and machines to use the <u>web content</u>.[1][2] It derives from <u>World Wide Web Consortium</u> director Sir <u>Tim Berners-Lee</u>'s vision of the Web as a universal medium for <u>data</u>, <u>information</u>, and <u>knowledge</u> exchange.[3]

http://www.w3.org/standards/semanticweb/

	Web 2.0 technology	Semantic Web	Web 2.0 disadvantages	Semantic Web
	Linked Documents	Linked Data (RDF)	No Interoperability Data Silos (in a logical sense, it lacks metadata)	Real-time Mashups & data updates
2	URL	URI (RDF)	Semantically empty links	Computers Interpret Info
3	Taxonomies & Tag Clouds	Shared Vocabularies - Ontologies	Semantic confusion, Duplicate terms.	Intelligent Discovery
4	Config. Files, Macros	Rules-based Inferencing	Document dead ends	Automated Data Interpretation & presentation
5	Database Query Lang. (SQL)	Logical Query Language (SPARQL)	Text line searches give irrelevant results. Constantly dig for info	Deep Reasoning automates Info Retrieval

It's the Next Big Leap

Shift to Knowledge Models

Data is Smart

Smart Data is Cool.

High Resolution, Global Interoperability

Robert Kruse President FacetApp LLC rkruse@facetapp.com (206) 726-9656 http://www.facetapp.com

Abstract ID: 13616

Semantic Interoperability Levels for Comparing Use Cases

Describing Value-Add of Semantic Web Design Using a Practical Interoperability Scale

Interoperability levels are an effective means of expressing the maturity of an IT system for ease of comparing before and after implementations of a semantic web system in a legacy environment.

Prior art describes Interoperability levels in a manner that is not always practical in a setting with non-technical business users, which can quickly lose focus and impact of the intent of the tool (e.g. LISI Model). Prior art also fails to capture the relative impact of different technologies as they move data across an operational workflow.

This presentation will reveal a simple, practical method for describing the interoperability value-added when moving from a legacy environment to a semantic environment with a common workflow. The case study describes an intensive rule-based system for processing legal contracts in the insurance industry. The application could easily be applied to a wide range of eGovernment situations seeking relief from data alignment problems of legacy IT Systems: SoS, C3I, Healthcare, Technology Transition, Energy, Nuclear Waste Remediation, and more.