
Requirements Development
and Management

2011 NDIA System Engineering Conference

San Diego, California
Presented by

Al Florence

The MITRE Corporation

The authors’ affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to

convey or imply MITRE's concurrence with, or support for, the positions, opinions or view points expressed by this presenter.

2MITRE
Al Florence

Tutorial overview

 Tutorial is in two major sections

» Part I provides a conceptual overview of the nature of requirements

> Much credit to Dr. Bill Bail - MITRE

» Part II provides an overview of some practice of writing, validating and
verifying effective requirements illustrated with real project examples

> Developed by Al Florence - MITRE

3MITRE
Al Florence

Agenda

 Motivation - why do we care?

 Nature of Requirements - what are they?

 Creating Requirements - How do we

define them?

 Challenges - some typical problems

PART I

 Requirements Management

 Independent Verification & Validation of

Requirements

 Examples of Effective Requirements Practices

» Independent Verification of Requirements

(Proper Specification of Requirements)

» Independent Validation

(Adherence to Requirements)

 Conclusion

 References

 Contact Information

4MITRE
Al Florence

Motivation - Why do we care?

 Requirements form foundation of all (software) system development

 If we don’t handle them properly, we incur significant risk

» Many historical examples demonstrate this

 Requirements will change over development period

» Planning ahead will mitigate resulting extra work (and risk)

“You get what you spec, not what you expect”

5MITRE
Al Florence

Motivation – Defense Science Board

Defense Science Board (SDB) Task Force on Defense Software

 Requirements setting and management are hardest parts of system
development

 Requirements management viewed as being a fundamental problem

 Problem seen with over-specification of requirements

 Under-utilization of modern technical and management practices for
requirements

 Need for advanced technology and tools

6MITRE
Al Florence

Backup – full quotations (1 of 2)

 ―The troubled DoD programs reviewed by this team exhibited fundamental
problems that were readily identifiable, at least in hindsight. Too often,
programs lacked well thought-out, disciplined program management and/or
software development processes. Meaningful cost, schedule, and
requirements baselines were lacking, making it virtually impossible to track
progress against them.‖ Sect 1.4, p. ES-2

 ―Requirements trade off. In general, systems are over-specified, and in most
cases there is no flexibility to adjust the specifications. The
acquisition/development team must have latitude to trade requirements for
cost, schedule, and risk. This does not mean that overall systems integrity
can be compromised.‖ Sect 1.4, p. ES-4

 ―The 1987 DSB Task Force observed that requirements-setting and
management are the hardest part of the software task and advocated the
use of evolutionary practices. This is still true today‖ Sect 2.5, p. 4

BACKUP

7MITRE
Al Florence

Backup – full quotations (2 of 2)

 ―The study also recognized that modern software architecture methods and
product lines could improve cost and cycle time. Technical and management
practices for better requirements management were described and
recommended long ago, as was the importance of team experience and
technical practices related to architecture reuse. These practices and
qualities are hallmarks of commercial best practice, but they remain largely
underutilized in the acquisition and development of defense software.‖ Sect
2.5 p. 5

 ―As complexity and combinatorial difficulty increases, the need for more
advanced technology will increase. The gap between system complexity and
our abilities is increasing, exacerbated by difficult requirements for
distributed, embedded, real-time, life-critical, survivable systems. Technology
solutions can reduce both the development complexity and the apparent
complexity by providing automation to tame the increasing intrinsic or
inherent complexity of software.‖ Sect 4.7, P. 32

BACKUP

8MITRE
Al Florence

Motivation - Software Engineering Institute

Capability Maturity Model Integration (CMMI®) v1.3 for:

» Development

» Acquisition

» Services

All these constellations have for process areas for Requirements
Development and Management

CMMI is a registered trademark of the SEI

To be compliment with the CMMI organizations need to implement and execute

Requirements Development and Management process

9MITRE
Al Florence

Motivation – Requirements Defects Propagate

Requirements

Defects
System

Hardware Software Facilities

Hardware Software Facilities

Hardware Software Facilities

Hardware Software Facilities

Architecture
Phases

Test
Phases

Requirements

Defects

Design, Code

& Interface

Defects

Test Case

Defects

Operational

Defects

Defects Requirements defects also propagate

to manual

operations and to procedures

A single defect in requirements can propagate horizontally and vertically

Conceptual
Phase

10MITRE
Al Florence

Motivation – Cost of Correcting Defects

Cost

1

200

Development OperationRequirements Test

$$$
$$$

$

Research suggests that correcting software defects can require nearly two hundred

times the effort if the correction is implemented in the maintenance phase versus the

requirements specification phase of a software lifecycle.

Davis, Alan M. Software Requirements: Objects, Functions, and States. Englewood

Cliffs, NJ: Prentice-Hall, *1993.

*This has not changed

11MITRE
Al Florence

Agenda

 Motivation - why do we care?

 Nature of Requirements - what are they?

 Creating Requirements - How do we

define them?

 Challenges - some typical problems

PART I PART II

 Requirements Management

 Independent Verification & Validation of

Requirements

 Examples of Effective Requirements Practices

» Independent Verification of Requirements

(Proper Specification of Requirements)

» Independent Validation

(Adherence to Requirements)

 Conclusion

 References

 Contact Information

12MITRE
Al Florence

Nature of requirements - what are they? (1 of 7)

NeedsHuh?

13MITRE
Al Florence

So, which word is “right”? (2 of 7)

 Many different words and terms are used

 Many different interpretations of what a ―requirement‖ is

 Which is ―right‖, ―wrong‖, ―correct‖, ―best‖, ….?

 ………….

 Depends…

» on what is meant

 Now, that is helpful…

 Let’s look at a definition from the IEEE

14MITRE
Al Florence

Many different types - we will

explore these in a moment

Nature of requirements - what are they? (3 of 7)

 IEEE Std. 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology

Requirement:

(1) A condition or capability needed by a user to solve a problem or achieve
an objective.

(2) A condition or capability that must be met or possessed by a system or
system component to satisfy a contract, standard, specification, or other
formally imposed documents.

(3) A documented representation of a condition or capability as in (1) or (2).

See also: design requirement; functional requirement; implementation
requirement; interface requirement; performance requirement; physical
requirement.

Build-to

As-built

15MITRE
Al Florence

Nature of requirements - what are they?(4 of 7)

 IEEE definition is broad – term often used carelessly

 Popular use often ignores this definition

» Anything that is “required”

» Ranges from hopes to dreams to budgets to schedules...

» ―This schedule is required‖…‖This budget is required‖…―These software
components must be used‖…‖These algorithms must be used‖…

 Different types of requirements need to be handled differently

» because they affect system/SW/HW development in different ways

 This section of the tutorial focuses on differentiating different types of
requirements

» and on recommending how to handle them appropriately

 Remember that all types of requirements are important in some way

Just because something is a requirement,

does not mean that it is a requirement
Huh?

16MITRE
Al Florence

 IEEE Std 830-1998 – IEEE Recommended Practice for System Requirements
Specifications:

―A requirement specifies an externally visible function or attribute of a system‖

» We can see inputs and the outputs, but not what happens inside

 For any product (SW, HW, total system), the behavioral requirements for that
product specify its externally visible behavior

» as seen by other systems outside

Nature of requirements - what are they?(6 of 7)

System

17MITRE
Al Florence

Nature of requirements - what are they?(7 7)

 But each such system could be part of a larger system

» Which has its own requirements (externally visible behavior)

For much of this briefing, ―requirement‖ denotes externally visible behavior

System

18MITRE
Al FlorenceComponent Requirements

Context of requirements

 All requirements are defined in context of a specific component (e.g., black
box)

» Which may consist of additional constituent components (e.g., subsystem,
modules,...)

» Hence there are multiple levels of requirements based on level of
component

> System level, subsystem level, software configuration item (SCI) level,
component level, software unit level,...

 Component design (its architecture) consists of:

» The requirements for behavior of each
constituent component

» The interrelationships between
the components

 Interaction of components produces
the behavior of parent component

Output
Input

19MITRE
Al Florence

Types of requirements
Reliability

Safety

Availability

Integrity of operation

Confidentiality
Behavioral

Programmatic

Ease of learning

Efficient to use

Easy to remember

Forgiving

……

Delivery Schedule

Cost

Documentation

Functional

Quality of

construction

Implementation

Interface

Temporal

Capacity

Resource

utilization

Trustworthiness

Usability

Maintainability

Reusability

Integrity of construction

Portability

Extensibility

Requirements

Design constraints

Implementation constraints

20MITRE
Al Florence

Some types of requirements

 Behavioral requirements - externally visible behaviors of an item (aka functional
specifications, functional requirements)

 Quality of construction requirements - qualitative attributes of an item, such as
maintainability and portability

» Often not directly externally observable – need to examine design and code

» Usually deal with how product can be handled

 Programmatic requirements - terms and conditions imposed as a part of a
contract exclusive of behavioral requirements (e.g., costs, schedules,
organizational structures) aka contractual

» Addresses development of product

 Implementation requirements - aka implementation constraints, design
constraints – restrictions placed on developers that limit design space
» e.g., Use of specific software components

» e.g., Imposition of specific algorithms

» e.g., Customer-mandated design patterns (e.g., fault tolerance)

21MITRE
Al Florence

Behavioral requirements (1 of 2)

 Externally visible behaviors of an item (component, subsystem, system,
unit,…) – all (potentially) measurable by testing

» Functional - input-output behavior in terms of responses to stimuli

> Output = fn(input), e.g., x  x2

» Interface - characteristics of component’s interfaces

> e.g., appearance of operator screens (user)

> e.g., interfaces with other systems/components (peer-to-peer)
> e.g., computing infrastructure / APIs (infrastructure)

» Temporal - speed, latency, and throughput of functional behaviors
> e.g., display refreshed screen every 0.5 sec, e.g., x  x2 in 0.5 sec
> e.g., process 10,000 database requests per hour

» Capacity - amount of information that can be handled
> e.g., 25 simultaneous users
> e.g., 20,000 employee records

» Resource utilization - limitations on computer resources that can be used

> Memory and processor usage

22MITRE
Al Florence

Behavioral requirements (2 of 2)

» Trustworthiness - degree of confidence in product’s delivery of functions
> Reliability - MTTF = 30 hrs

> Availability - 99% over 30 days

> Safety (e.g., actions to avoid) – ―don’t do this!‖

> Confidentiality – avoid unauthorized release of information

> Integrity – ability of system to avoid being corrupted

» Usability - how easy it is for an operator/user to make use of the system
> For both system to system interfaces and user interfaces

 However, being externally visible does not result in testability

» ―System shall run for 100 years without failure‖

» ―System shall be able to handle 1000 users simultaneously‖

 In general, trustworthiness and usability requirements cannot be tested
directly

» Validation based on body of evidence to provide basis for trust

23MITRE
Al Florence

Quality of construction requirements

 Qualitative attributes of an item

» Deal with how product can be handled

» Not usually directly measurable or observable

» We have measures that can give us insight into these qualities, help us to infer level of

quality

> Based on related quantitative attributes of systems

» But direct measures do not in general exist

 Examples:

» Portability – ease with which component can be ported from one platform to another

» Maintainability – ease with which product can be fixed when defects are discovered

» Extensibility – ease with which product can be enhanced with new functionality

» Dependability—degree of confidence in product’s delivery of functions

> Reliability—MTTF = 30 hrs

> Availability—99% over 30 days

24MITRE
Al Florence

Programmatic (contractual) requirements

 Terms and conditions imposed as a part of a contract exclusive of behavioral
requirements

 Address development aspects of product

 Examples

» Costs

» Schedules

» Organizational structures

» Key people

» Locations

 While these are required characteristics of development effort, they are not
characteristics of the product

 However, they directly affect ability to develop a system

» e.g., not enough money or time

25MITRE
Al Florence

Implementation requirements (1 of 2)

 Restrictions placed on developers that limit design space

 Two important types:

» Design and implementation constraints – restrictions on design styles and
coding

» Process and development approach constraints – restrictions on
processes and techniques

 Examples

» Use of specific software components

» Imposition of specific algorithms

» Required use of specific designs

» Imposition of specific coding styles

» Requiring use of a specific language

26MITRE
Al Florence

* IEEE Recommended Practice for

Software Requirements Specifications

Qualities of requirements (1 of 2)

 IEEE Std 830-1993* defines nine qualities for requirements specifications

» Complete – All external behaviors are defined

» Unambiguous – Every requirement has one and only one interpretation

» Correct – Every requirement stated is one that system shall meet

» Consistent – No subset of requirements conflict with each other

» Verifiable – A cost-effective finite process exists to show that each
requirement has been successfully implemented

» Modifiable – Structure and style are such that any changes to
requirements can be made easily, completely, and consistently while
retaining structure and style.

27MITRE
Al Florence

Qualities of requirements (2 of 2)

 IEEE Std 830-1993 qualities of requirements (cont’d)

» Traceable – Origin of each requirement is clear, and structure facilitates
referencing each requirement within lower-level documentation

» Ranked for importance – Each requirement rated for criticality to system,
based on negative impact should requirement not be implemented

» Ranked for stability – Each requirement rated for likelihood to change,
based on changing expectations or level of uncertainty in its description

 Absence of these qualities is strongly correlated to subsequent problems in
development, i.e., ignore at your own risk

28MITRE
Al Florence

Agenda

 Motivation - why do we care?

 Nature of Requirements - what are they?

 Creating Requirements - How do we

define them?

 Challenges - some typical problems

PART I PART II

 Requirements Management

 Independent Verification & Validation of

Requirements

 Examples of Effective Requirements Practices

» Independent Verification of Requirements

(Proper Specification of Requirements)

» Independent Validation

(Adherence to Requirements)

 Conclusion

 References

 Contact Information

29MITRE
Al Florence

Historic Abstraction

 Multiple levels of components are defined to minimize
complexity during construction

» Systems decomposed into subsystems

» Subsystems decomposed into hardware/software

» These are decomposed into lower components

 Each decomposition helps to manage complexity

» by breaking problem down into smaller problems

 System behavior achieved by interactions between components

 System has requirements for its behavior

» Each subsystem has requirements for its own behavior

» Functional composition of subsystems produces system behavior

30MITRE
Al Florence

When Requirements are Defined

 Requirements definition continues throughout development

 During requirements gathering

» Gathering user needs / high level system definition

 During systems definition phase

» Usually at a general level

 During system design phase

» Detail added, capabilities become functions

 During Software/Hardware requirements analysis

» More detail added, more specific
behaviors and formats

 During software design/implementation

» Refinement / clarification / more detail

> e.g., GUI details often deferred
until later

» Changes / adaptations

» Additions (e.g., evolutionary development)

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

Requirements

Analysis

Top Level

Design

Detailed

Design

Implementation

Time

N
u
m

 o
f

R
e
q
u
ir

e
m

e
n
ts

31MITRE
Al Florence

Historic Abstraction

 Multiple levels of components are defined to minimize
complexity during construction

» Systems decomposed into subsystems

» Subsystems decomposed into hardware/software

» These are decomposed into lower components

 Each decomposition helps to manage complexity

» by breaking problem down into smaller problems

 System behavior achieved by interactions between components

 System has requirements for its behavior

» Each subsystem has requirements for its own behavior

» Functional composition of subsystems produces system behavior

32MITRE
Al Florence

Major

Component

Requirements

Major

Component

Requirements

Major

Component

Requirements

Major

Component

Requirements

Major

Component

Requirements

Historic requirements progression

Mission

needs

Overall system

concept

Operational

Requirements

System

Requirements

System

Design

Why system is needed, what the overall problem is

Role of system in solving the problem

Capabilities system needs to solve the problem

Functions necessary to achieve capabilities

Overall design of system,

including components that

are used to build system

a n a l y
s
i
s

a n a l y
s
i
s

a n a l y
s
i
s

a n a l y
s
i
s

a n a l y
s
i
s

System

definition

System design

Hardware/Software

development

33MITRE
Al Florence

D
ec

is
io

n
 P

ro
ce

ss

D
ec

is
io

n
 P

ro
ce

ss

Decision points for requirements definition

Each step in progression involves deciding between alternative approaches
using trade off analyses

Capabilities

Set A

Capabilities

Set C

System

Rqmts

System

Rqmts

System

Rqmts

System

Rqmts

System

Dsn

System

Dsn

SW/HW

Rqmts

SW/HW

Rqmts

SW/HW

Rqmts

SW/HW

Rqmts

D
ec

is
io

n
 P

ro
ce

ss

System

Concept

Set A
D

ec
is

io
n

 P
ro

ce
ss

System

Dsn

Capabilities

Set B

System

Concept

Set C

D
ec

is
io

n
 P

ro
ce

ss

Mission

Needs

System

Concept

Set B

System design

Hardware/Software design

34MITRE
Al Florence

Requirements analysis

 Requirements allocation to HW/SW components not same as defining
HW/SW requirements

 Once requirements allocated to components, HW/SW requirements analysis
needed to:

» Derive down to specifice HW/SW requirements

» Place into form suitable for implementation

 Involves trade-off analyses

Draft

RSs

―Final‖

RSs
Final

Product

HW/SW Rqmts Anl HW/SW Dsn HW/SW Impl NW/SW Test

Software Engineering

Systems Engineering

Sys Rqmts Anl Sys Dsn

Skipping this analysis is very risky

35MITRE
Al Florence

Requirements analysis techniques

 Different techniques/processes are used

» ad hoc techniques

» Functional techniques

» Object-oriented techniques

 New processes arrive every day

» Agile Unified Process

» Extreme Programming

» Cleanroom Software Engineering

 Many tools exist

» DOORS

» Analyst Pro

» Rational Rose

 All should produce the same result – a description of behavior of the system

 Important to select technique to be appropriate to system

36MITRE
Al Florence

Levels of requirements documentation

System Requirements

Subsystem

Requirements

Configuration Item

Requirements

Component

Requirements

Unit Requirements

Each level of component can

have formal documented

requirements (but not usually

written at all levels)

E.g., SRS, HRS, IRS

E.g., Design Docs

(Allocated

Requirements)

37MITRE
Al Florence

Requirements tracing

 Each and every requirement defined at each level must be

» Based on a requirement at next higher-level (else it has no reason to exist)

» Supported by a requirement/design feature at next lower-level (else it will not
be achieved)

» Hence all requirements are derived (from a higher level)

 Sometimes mapping is simple (1–1, 1–many or 1–few)

 Sometimes mapping is complex and/or indirect (1–to–many or many–to–1)

 Use of automated tools (such as DOORS) to track mapping recommended

Component

Requirements
Component

Requirements
Component

Requirements
Component

Design

Mission

needs

Overall

system

concept

Operational

Requirements

System*

Requirements

System*

Design

*Could imply hardware or software

All need to trace

To test cases

As appropriate

38MITRE
Al Florence

Agenda

 Motivation - why do we care?

 Nature of Requirements - what are they?

 Creating Requirements - How do we

define them?

 Challenges - some typical problems

PART I PART II

 Requirements Management

 Independent Verification & Validation of

Requirements

 Examples of Effective Requirements Practices

» Independent Verification of Requirements

(Proper Specification of Requirements)

» Independent Validation

(Adherence to Requirements)

 Conclusion

 References

 Contact Information

39MITRE
Al Florence

Challenges - some typical problems

 Requirements volatility

 Delayed definition of requirements

 Human Machine Interfaces (HMIs)

 Prioritizing requirements

 Mixing requirements and design

 Overs-specified / over-constrained / unbounded

 Use cases

 Levels of detail

40MITRE
Al Florence

Requirements volatility (1 of 2)

 Requirements always change – get used to it

» Some don’t change, but are defined late

 Not necessarily bad (sometimes good) but careful management needed to avoid

» Expensive rework (and cost and schedule impact)

» Compromises to functionality

 Crucial to associate levels of risk to levels of change

» Some changes are low-risk

» Other may be high risk

» Related to amount of rework require

 Developers better able to design defensively if they know

» Which requirements are likely to change

» Degree of change that could be expected

 Remember IEEE quality – ranked for stability

41MITRE
Al Florence

Requirements volatility – recommendations (2 of 2)

 The following are recommendations to address requirements volatility:

» Define requirements with priorities and likelihood to change

> Allows designers to insulate themselves from unexpected change

» Ensure design accommodates expected changes

» Where possible, allow run-time reconfiguration to allow changing behavior
without changing requirements

> e.g., screen color options

» Correlate with assessment of late definitions

» Assess dependencies between requirements and design

> Some requirements deeply affect design globally

> Others have limited design impact (GUI formats)

» Ensure requirements dependencies are well understood

» Define and monitor requirements stability with metrics

> Track immature requirements, undefined requirements, and changing
requirements

42MITRE
Al Florence

Delayed definition of requirements (1 of 2)

 Depends on attributes of the requirement and its linkage to design

» Some can be defined early or late

» Some must be defined early

» Some should be defined later

 Important attributes (i.e., how to decide…)

» If level of understanding of desired behavior is low (exact behaviors not
well understood or unknown) – delay in definition may reduce risk

> If defined and frozen early, later changes may impact design and
cause rework

» If high likelihood that requirement will change – delay in definition may
reduce risk

> Avoids rework due to late changes

43MITRE
Al Florence

Delayed definition of requirements (2 of 2)

 Important attributes (cont’d)

» If a requirement has high or complex external component dependencies
– early resolution may reduce risk

> Late changes likely to affect external systems/components

» If a requirement has strong internal design dependencies – early
resolution may reduce risk

> Late changes may force extensive rework due to design dependencies

Level of understanding of desired behavior

Likelihood that requirement will change

External component dependencies

Internal design dependencies

Early definition

lowhigh

highlow

complex simple

weakstrong

Late definition

44MITRE
Al Florence

Human Machine Interfaces (1 of 2)

 Human Machine Interface

» General term referring to interface between the system and humans

> Operators, information recipients, spectators, …

» How information is conveyed to humans from system

» How information is provided to system by humans

» How control is achieved by operators over system

 Sometimes referred to as

» HCI (human computer interface), MMI (man machine interface), HSI
(human system interface), ...

» GUI - graphical user interface

> Strictly speaking, GUI refers only to HMIs that employ graphics

> Text-based menus generally are not included in this category

 HMIs are externally visible – hence are part of system requirements

» Failure to treat as requirements can lead to problems

45MITRE
Al Florence

Human Machine Interfaces (2 of 2)

 If HMI is awkward and ineffective, system will be a failure

» If system cannot be effectively and efficiently used, role will be diminished

 Recommendations:

» For systems where humans are a part of mission, human performance must be
a part of system performance

> Define performance requirements which include human-in-the-loop

» Involve users early with design of user interfaces

> Exploit dynamic prototypes, avoid prolonged use of static displays

» Perform usability analysis to determine how well users can learn and interact
with system

> Measure overall performance

» Obtain formal agreement on HMI once defined as part of requirements

> Avoids second-guessing during system acceptance

» Defer some HMI features as run-time configuration option

> If appropriate, to avoid code rework

» Rely on standards and standard tools to help produce common view

46MITRE
Al Florence

Prioritizing requirements (1 of 2)

 Not all requirements are equal

» Some are more firm than others

» Others may be guesses and have flexibility about final behavior

 Traditional approach was to use ―shall‖ to denote firm requirements

» But too binary

 One approach – ―Threshold‖ and ―Objective‖

> Threshold – minimum acceptable value necessary to satisfy need

- Failure to meet threshold values will seriously degrade program performance,
make program too costly, or cause program to be no longer timely

> Objective – value desired by user

- Represents an operationally meaningful, time critical, and cost-effective
increment above threshold for each program parameter

- Program objectives (parameters, and values) may be refined based on the
results of preceding program phase(s)

47MITRE
Al Florence

Prioritizing requirements (2 of 2)

 Recommendations

» Define rigidity of requirements and ranges of acceptance

> Thresholds and objectives

> ―Must haves‖ versus ―wanna haves‖ versus ―wouldn’t it be nice‖

» Assess potential for being changed

» Remember IEEE quality ranked for importance

48MITRE
Al Florence

Mixing requirements and design

 What might happen...

» Inefficient and ineffective testing

> Software testing is based on System Requirements Specifications (SRS)

> If SRS contains design as well as behavior, either

- Testers must separate design from behavior before testing, or

- Testers must test for design as well as behavior, requiring breaking into
internals of HW/SW

» Inefficient processing

> If algorithm is specified as part of SRS, designers might not have flexibility to
optimize

» Excessive CM effort – baselined design changes require Configuration
Managment authority

 Recommendations:

» Place all design information (including. algorithms) into separate volumes

> e.g., A Design Document

> Ensure all requirements are externally visible and can be tested without
examining design/construction

49MITRE
Al Florence

Over-specified / over-constrained / unbounded

 Sometimes requirements are too ambitious, too restrictive, or too general

 Too ambitious – results in gold-plating

» Unneeded capabilities created, unattainable functions defined

 Too restrictive – results in narrow, point solutions

» System rapidly becomes outdated when mission changes

 Too general – results in inefficient system that does everything but not well

 Result is wasted resources

 Recommendations (these are very general but important)

» Focus on prioritization of requirements

» Ensure what is needed is emphasized

» Build system in a series of increments

> With most critical functions completed early

50MITRE
Al Florence

A note on use cases and requirements

 According to Brooch, Rumbaugh, Jacobson. The Unified Modeling Language
Users Guide:

» “A use case specifies the behavior of a system or part of a system and is a
description of a set of sequences of actions, including variants, that a system
performs to yield an observable result of value to an actor”

» “A use case describes what a system ... does but it does not specify how it
does it.”

 This is misleading

 Use cases provide some information about behavioral requirements but do not
specify them to sufficient level of detail for development

 They are however when used with scenarios fundamentally important to
requirements definition

» Help to elicit requirements by looking at the users’ view

» Help to describe how system will be used

A use case is an important AID to defining requirements - but use cases

do not themselves define requirements

51MITRE
Al Florence

Levels of detail for requirements (1 of 2)

 When developing a system, requirements typically start at general level

» List of capabilities – what users want to be able to do

> ―The product shall allow users to perform word processing‖

» Sometimes, detailed behaviors known

> e.g., preexisting external interfaces

> e.g., required screen formats and display icons

 As development proceeds, general requirements are refined until they
become specific behaviors

» ―Pressing Ctrl and I at the same time results in the selected text being
converted to an italics font within 0.5 sec‖

 At some point, all requirements defined

» Perhaps not formally

No matter how much detail is provided, requirements

are never design (for a specific component)

52MITRE
Al Florence

Levels of detail for requirements (2 of 2)

 Regardless of level and amount of detail, as long as descriptions address
external behavior, they are requirements and not design

» Including GUI screens and formats, interface formats and protocols

» (Note that ―interface design‖ is actually part of requirements definition)

 But wait!!!!! (the audience protests...) I don’t care about a lot of the details – I
know what my real requirements are, the rest is in the noise!! Let the
designers decide later.

 Good idea, but remember, what is or is not a requirement (in our specific use of
term) is not dictated by whether it is important or not

» just whether it is externally visible outside of component

53MITRE
Al Florence

End of Part I

 This half of tutorial presented an overview of some essentials of
requirements engineering

» Many additional details are involved

 Proper care and feeding of requirements is essential to project success

» Different types of requirements must be managed separately

 Any questions?....

54MITRE
Al Florence

Agenda

 Motivation - why do we care?

 Nature of Requirements - what are they?

 Creating Requirements - How do we

define them?

 Challenges - some typical problems

PART I PART II

 Requirements Management

 Independent Verification & Validation of

Requirements

 Examples of Effective Requirements Practices

» Independent Verification of Requirements

(Proper Specification of Requirements)

» Independent Validation

(Adherence to Requirements)

 Conclusion

 References

 Contact Information

55MITRE
Al Florence

Requirements Management (1 of 3)

 Requirements management

» Starts at the system level

» Continues through lower levels of requirements allocations

» Continues throughout all development phases

» Through the entire lifecycle

 An understanding of the requirements at all levels is established with all
stakeholders (users, developers, customers)

 Commitments to Requirements are obtained at all levels with all
stakeholders

 Inconsistencies between project work and requirements are resolved

56MITRE
Al Florence

Requirements Management (2 of 3)

 Traceability of requirements is essential so requirements can be traced
to/from design, implementation and test.

 Bi-directional traceability of requirements is established and maintained:

» User needs to/from system level

» System level to/from subsystem level to/from system tests procedures

» Subsystem to/from software/hardware/facilities/procedures/subsystem test
procedures, etc.

» Software requirements are traced:

> to/from design

> to/from software test procedures

> to/from software test reports

57MITRE
Al Florence

Requirements Management (3 of 3)

 Changes to requirements are managed at all levels

» Requirements are baselined

» Changes to baselined requirements are:

> Formally requested

> Assessed not limited to:

- Cost to implement

- Schedule time to implement

- Functional effect

- Interface effect

> Approved or disapproved by:

- Acquirer

- Supplier

58MITRE
Al Florence

Agenda

 Motivation - why do we care?

 Nature of Requirements - what are they?

 Creating Requirements - How do we

define them?

 Challenges - some typical problems

PART I PART II

 Requirements Management

 Independent Verification & Validation of

Requirements

 Examples of Effective Requirements Practices

» Independent Verification of Requirements

(Proper Specification of Requirements)

» Independent Validation

(Adherence to Requirements)

 Conclusion

 References

 Contact Information

59MITRE
Al Florence

Verification & Validation

 Verification (Are we building the product right?)

The process of determining whether or not the products of a given phase of the

development cycle fulfill the requirements established during the previous phase.

 Validation (Are we building the right product?)

The process of evaluating the products at the end of the development process to

ensure compliance with requirements.

IEEE Standard for Software Verification and Validation Plans

60MITRE
Al Florence

Independence

 Independence of verification and validation means that the associated
activities are performed in parallel with, and in addition to, the activities
associated with the development of the product.

 Independence also means that the organization performing the IV&V
activities is separate from the organization responsible for developing the
product.

61MITRE
Al Florence

Scope of IV&V

 The scope of the IV&V effort is dependent on several project factors such as:

» Cost

» Size of products

» Schedule

» Complexity

» Criticality

» Security

» Safety

» Risk

 IV&V can be very costly.

 Analysis of project factors will support the development of a cost effective
IV&V effort that is appropriately tailored to the scope of the application.

62MITRE
Al Florence

IV&V during the Development Life Cycle

 Independent Verification is conducted throughout the development life cycle
phases: requirements, design, implementation, integration and test.

 Activities of verification may include:

» Reviews

» Analysis

» Prototypes

» Simulations

» Testing

63MITRE
Al Florence

Independent Verification (1 of 4)

 Requirements Phase – Independent Verification ensures that the products of
the requirements phase satisfy the criteria established during previous
activities, such as planning.

 Products to verify may include:

» Requirements Specifications

» Interface Specifications

» Development Schedules

» Development Plans

» Quality Assurance Plans

» Configuration Management Plans

» Risk Management Plans

» Test Plans

64MITRE
Al Florence

Independent Verification (2 of 4)

 Design Phase – Independent Verification ensures that the products of the
design phase satisfy the criteria established during the requirements phase.

 Products to verify may include:

» Design documents

» Interface design

» Updated products of prior phases including requirements

65MITRE
Al Florence

Independent Verification (3 of 4)

 Implementation Phase – Independent Verification ensures that the products
of the implementation phase satisfy the criteria established during the
design phase.

 Products to verify may include:

» Code

» Unit Test Plans

» Unit Test Procedures

» Unit Test Reports

» Updated products of prior phases including requirements

66MITRE
Al Florence

Independent Verification (4 of 4)

 Test Phases – Independent Verification ensures that the products of the test
phases satisfy the criteria established during the implementation phase.

 The test phases may cover:

» Functional Tests (usually against requirements)

» System Integration Tests

» Certification Tests

 Test Phases Products may include:

» Functional Tests, System Integration Testing, Acceptance Testing, and
Certification Testing:

> Test Plans

> Test Descriptions

> Test Procedures

> Test Reports

» Updated products of prior phases including requirements

67MITRE
Al Florence

Independent Validation

 Independent Validation ensures that the correct products are developed with
the main focus on compliance with specified requirements.

 Planning for Independent Validation activities start at or before the
requirements phase.

» This includes ensuring that requirements are testable

 Independent Validation testing is conducted at the end of the development life
cycle.

 Products and activities that are used to validate that the software/system
satisfies its specified requirements are:

» Validation Test Plans

» Validation Test Descriptions

» Validation Test Procedures

» Validation Test Conduct

» Validation Test Reports

68MITRE
Al Florence

Agenda

 Motivation - why do we care?

 Nature of Requirements - what are they?

 Creating Requirements - How do we

define them?

 Challenges - some typical problems

PART I PART II

 Requirements Management

 Independent Verification & Validation of

Requirements

 Examples of Effective Requirements Practices

» Independent Verification of Requirements

(Proper Specification of Requirements)

» Independent Validation

(Adherence to Requirements)

 Conclusion

 References

 Contact Information

69MITRE
Al Florence

Proper Specification of Requirements

 Verification (Are we building the product right?)

» The process of determining whether or not the products of a given phase of the

software development cycle fulfill the requirements established during the previous

phase.

 The following examples show a method of verifying requirements during their
specification.

» Specification in this context means documenting/writing the requirements.

» Many methods of verifying requirements exist:

> The verification method here is to verify that the requirements are specified in
a fashion that satisfies the needs of the stakeholders (users, developers,
customers).

> These needs have been established in prior activities such as:

- conceptual design / system level requirements analysis

- request for proposal

- proposals

- planning, etc.

70MITRE
Al Florence

Class Participation

Determine the problems with these 3 requirements:

3.2.5.9 All computer-resident information that is sensitive shall have
system access controls. Access controls shall be consistent with the
information being protected and the computer system hosting the data.

• All computer-resident information that is sensitive shall have system
access controls. Access controls shall be consistent with the
information being protected and the computer system hosting the data.

The interval for propagating changes to suppliers shall be configurable.

71MITRE
Al Florence

Independent Verification of Requirements

 A Government agency, while modernizing their information systems, reverse-
engineered requirements.

 With domain knowledge of the application, several teams were involved.
» They represented:

> the users

> the contractors

> the acquisition organization

 This author was assigned as a consultant to guide the teams in the proper
specification of requirements.

 The examples presented show some of the requirements:
» as initially specified by the teams

» next a critique of the requirements by this author

» finally the re-specified requirements based on the critique

72MITRE
Al Florence

Background (1 of 2)

 It needs to be noted that requirements do not “live alone”

» They depend on other requirements and/or

» on clarifying comments

to present a complete view of the functionality associated with a
related set of requirements.

 A related set of functional requirements may be introduced with a
preamble describing the capability of the functional set.

» The preamble does not itself establish requirements; this is done
later in the requirements’ specifications.

 Some requirements may be amplified with clarifying comments which
are, again, not part of the requirements, but add understandability.

73MITRE
Al Florence

Background (2 of 2)

 Some requirements are documented sequentially with the
requirements stated first setting the “stage” for the following
requirements which add more and more capability.

» The later stated requirements depend on the earlier
requirements to complete their functionally.

» An example may be the use of the word “processing”. If the
processing of a functional set of related requirements has been
described in earlier requirements the later requirements may
amplify and/or reference the processing without having to
restate the processing.

74MITRE
Al Florence

Criteria for Specifying a Good Requirement (1 of 3)

 The following are some critical attributes that requirements must adhere to:
used to critique requirements

Completeness: Requirements should be complete.

They should reflect system objectives and specify the relationship between the
software and the rest of the subsystems.

 Traceability: Each requirement must be traceable to some
higher-level source, such as a system-level
requirement.

Each requirement should also be traced to lower level design and test abstractions
such as high-level and detailed-level design and test cases.

 Testability: All requirements must be testable in order to
demonstrate that the software end product satisfies its
requirements.

In order for requirements to be testable they must be specific, unambiguous, and
quantitative whenever possible. Avoid negative, vague and general statements.

75MITRE
Al Florence

Criteria for Specifying a Good Requirement (2 of 3)

Consistency: Requirements must be consistent with each other; no
requirement should conflict with any other requirement.

Requirements should be checked by examining all requirements in relation to each other

for consistency and compatibility.

 Feasibility: Each requirement must be feasible to implement.
Requirements that have questionable feasibility should be analyzed during requirements

analysis to prove their feasibility,

Unique identification: Uniquely identifying each requirement is essential
if requirements are to be traceable and testable.

Uniqueness also helps in stating requirements in a clear and consistent fashion.

76MITRE
Al Florence

Criteria for Specifying a Good Requirement (3 of 3)

Design Free: Software requirements should be specified at a
requirements level not at a design level.

The approach should be to describe the software requirement functionally from a system
(external) point of view, not from a software design point-of-view, i.e. describe the system

functions that the software must satisfy. Some requirements may have design

embedded due to constraints placed on them by the system, interfaces or legacy.

Use of ―shall‖ and related words: In specifications, the use of the
word "shall" indicates a binding
provision.

Binding provisions must be implemented by users of specifications. To state non-binding
provisions, use "should" or "may". Use "will" to express a declaration of purpose (e.g.,

"The Government will furnish..."), or to express future tense. MIL-STD-490A

Note: Methods other that the use of “shall” can be used to specify requirements such

as using a matrix with a column for requirements and another column for comments or

italics or underlines for comments or requirements.

77MITRE
Al Florence

Ensuring the Verification of Requirements

 The process was for the teams to first define and reverse-engineer the
requirements based on:

» Knowledge of the system

» Knowledge of what is needed

» Any existing legacy documentation

> requirements

> design

> users manuals

> pamphlets

> procedures, etc.

 Critiquing this definition of the requirements against the critical attributes and
then subsequently correcting them as per the critique ensured that the
requirements were verified for stakeholders needs.

 Many iterations of this process were done until it was felt that the requirements
were well specified, defined and verified.

78MITRE
Al Florence

Example 1 (1 of 2)

 Initial specification:

3.4.6.3 The system shall prevent processing of duplicate electronic
files by checking a new SDATE record. An e-mail message
shall be sent

 Critique:
1. Two ―shalls‖ under one requirement number

2. When is the SDATE record checked?

3. Against what other records is the SDATE record checked?

4. What is checked in the SDATE record?

5. What action is taken after the SDATE record is checked?

6. What does the email message say?

7. When is the email message sent?

8. The requirement has design implications, SDATE record

A requirement should specify what the data in the record are and not the
name of the record as it exists in the design and implementation.

79MITRE
Al Florence

Example 1 (2 of 2)

 Re-specification:

3.4.6.3 The system shall:

a. prevent processing of duplicate electronic files by immediately checking the
date and time of the submission against prior submissions, and

b. immediately send the following e-mail message:

1. request updated submission date and time, if necessary, and

2. state that the submission was successful, when successful.

80MITRE
Al Florence

Example 2 (1 of 2)

 Initial specification:

After the system receives the Validation file, the system shall:
• notify the individual about acceptance or rejection.

• the acceptance file must contain the name control and ZIP code of the individual.

• rejected validation request must include the Reason Code.

 Critique:
1. The second and third bullets don’t make sense, try to read them as such:

> the system shall the acceptance file must...

> the system shall rejected validation…

2. Use of both ―shall‖ and ―must‖.

3. Where are the reason codes?

4. Who is notified?

5. How is the individual notified?

6. No unique identifier

7. Use of bullets, bullets are difficult to trace.

81MITRE
Al Florence

Example 2 (2 of 2)

 Re-specification:

3.2.7.3 When the system receives a validation file, the system shall:

a. reject the file if it does not contain the individual’s:

1. name, and/or

2. ZIP code, and

b. notify the individual via electronic transmission about acceptance or
rejection with a reason code for rejection. (Reference Reason Code, Table
5.4.8), and

c. request corrected resubmission, if rejected.

82MITRE
Al Florence

Example 3 (1 of 2)

 Initial specification

The Financial Agent sends to the Government by 6:00 PM ET on the same day
after receipt the file CRDF that includes only critical data collected from the
enrolled individual.

 Critique

1. No unique identifier provided.

2. The word ―shall‖ is missing.

3. How is the file sent?

4. Has design implications: ―CRDF‖.

Should define data, not name of data file - this should be done in the design.

5. The critical data has to be identified.

83MITRE
Al Florence

Example 3 (2 of 2)

 Re-specification

3.3.1.3 The Financial Agent shall send the Government, via electronic transmission,
the following critical data collected from each enrolled individuals by 6:00 PM ET on
the day of receipt or the next day if received after 5:30 PM:

a. Name,

b. Address,

c. Zip code,

d. Social security number.

84MITRE
Al Florence

Example 4

Initial specification:

Software will not be loaded from unknown sources onto the system without

first having the software tested and approved.

Critique:

Re-specification:

3.2.5.2 Software shall be loaded onto the operational system only after it has

been tested and approved.

• If it’s tested and approved, can it be loaded from unknown sources?

• If the source is known, can it be loaded without being tested and approved?

• Requirement is ambiguous and stated as a negative requirement, which
makes it difficult to implement and test.

•
•

• A unique identifier is not provided, which makes it difficult to trace.
•

• The word “shall” is missing.

85MITRE
Al Florence

Example 5 (1 of 2)

Initial specification:

3.2.5.7 The system shall process two new fields (provides production count

balancing info to states) at the end-of-state record.

Critique:

• This requirement cannot be implemented or tested.

Re-specification:

3.2.5.7 The system shall provide the following data items (provides production

count balancing information to states) at the end-of-state record:

a. SDATE, and

b. YR-TO-DATE-COUNT

• “Info” should be spelled out.

• It is incomplete. What are the two new fields?

86MITRE
Al Florence

Example 5 (2 of 2)

Re-Critique:

• This rewrite has design implications SDATE record and YR-TO-DATE-

COUNT.

Re-Re-Specification:

3.2.5.7 The system shall provide the following data items (provides production

count balancing information to states) at the end-of-state record:

a. submission date and time, and

b. year-to-date totals.

• From a requirements viewpoint it should specify what the data in the

records are, not the name of the record as it exists in the design and

implementation.

87MITRE
Al Florence

Example 6

Initial specification:

3.2.9.1 When doing calculations the software shall produce correct results.

Re-specification:

Requirement deleted.

Critique:

• Really? This is not a requirement.

• This type of requirements should not be specified!

• It should be deleted.

88MITRE
Al Florence

Agenda

 Motivation - why do we care?

 Nature of Requirements - what are they?

 Creating Requirements - How do we

define them?

 Challenges - some typical problems

PART I PART II

 Requirements Management

 Independent Verification & Validation of

Requirements

 Examples of Effective Requirements Practices

» Independent Verification of Requirements

(Proper Specification of Requirements)

» Independent Validation

(Adherence to Requirements)

 Conclusion

 References

 Contact Information

89MITRE
Al Florence

Independent Validation of Adherence to Requirements

 Validation (Are we building the right product?)

» The process of evaluating software at the end of the software development
process to ensure compliance with software requirements.

 These examples show a method of constructing validation scenarios and
procedures to support the evaluation of a software product to ensure that the
it satisfied its requirements as specified.

90MITRE
Al Florence

Independent Validation of Adherence to Requirements

 A Government agency’s system

» had been operation for 5 years

» had never been through either functional or acceptance tests.

» had almost no documented requirements

 MITRE was asked to support an IV&V effort on the system.
» reverse-engineered requirements from:

> whatever legacy documentation existed

> interviews with domain experts and system users

» developed:

> Validation Plans

> Validation Schedules

> Validation Scenarios

» supported the development of validation procedures

 The Government agency conducted the validation testing

91MITRE
Al Florence

Example of Validation

 The following examples Illustrate:

» High-level validation scenarios

» Detailed validation procedures

Test execution examples are not provided since test activities are

beyond the scope of this presentation.

Outputs

Clear Box Tests

Inputs

Unit Tests

Black Box Tests

Functional Tests

Inputs Outputs
This

92MITRE
Al Florence

Validation Scenarios

 Validation Scenarios include:

» A high-level statement of the purpose of the scenario (requirement/functionality
tested)

» Description of scenario

> test conditions

> test conduct

> test validation

» Description of what/where to validate

» Identifies the validation method : test, demonstration, inspection, analysis

Validation scenarios describe at a high-level what needs to be accomplished during

testing to ensure that the implemented system satisfies its requirements as specified.

Validation scenarios describe the functionality that is to be tested.

93MITRE
Al Florence

Validation Procedures (1 of 2)

 Detailed validation procedures implement the validation scenarios and
describe how the testing is accomplished to validate that the system, as
developed, satisfies its requirements as specified.

 The validation procedures establish the specific data and steps needed to be
performed in order to validate the system/software against its requirements.

94MITRE
Al Florence

Validation Procedures (2 of 2)

 The following provides a sample of the information contained in each
validation procedure:

» Identification of requirements tested by the procedure.

» Identification of test data or other information required to determine test results.

» Test operators’ actions for each step, as required:

> Initiate the test case and apply test inputs

> Perform interim evaluations of test results

> Request data dumps

> Record data and test results

> Modify data, if needed

> Repeat the test case, if needed

> Use evaluation criteria to validate that requirements are satisfied

> Determine Pass/fail

> Provide test comments

95MITRE
Al Florence

Scenarios/Procedures

 Scenarios and procedures can be developed at different levels for either:

» an individual unique single requirement

> One scenario and one procedure may be necessary for a requirement

» a logically related set of requirements that provides a functional capability

> In this case, the set of requirements may be grouped and addressed by one or a
few scenarios and procedures

96MITRE
Al Florence

Example 1 (1 of 3)

Requirement

3.3.1.3 The Financial Agent (FA) shall send the Government the following critical data
collected from the enrolled individuals by 6:00 PM ET on the same day as receipt or
the next day if received after 5:30 PM:

a. Name,

b. Address,

c. Zip code,

d. Social security number.

97MITRE
Al Florence

Example 1 (2 of 3)

Validation Scenario

S0032 for 3.3.1.3 - Validate that the FA sends the Government critical data
collected from the enrolled individuals by 6:00 PM ET on the same day as receipt
or the next day if received after 5:30 PM .

1. Construct a file with the required critical data for an individual.

2. Initiate input to the system of the constructed file.

3. Validate that the requirement was met.

Validation Method - Demonstration

To validate that the requirement was met, check to see if the Government received the critical

data by 6:00 PM ET on the same day as receipt by viewing the appropriate file in the

Government’s system.

98MITRE
Al Florence

Validation Procedure

Date Req# Procedure P0024Scen# QAP/F

Comments

1. Data: Al Florence, 26 Dutch Creek Drive,

Columbine, Colorado, 80123-1623, 374-XX-

4237

2. Input data into Enrolled Individual Critical Data file

on FA System.

3. Initiate the execution of the Enrollment Function

on the FA System.

4. Validate that the Government received the data in

(1) by 6 PM ET on the same day as receipt by

checking the Enrolled Individual Critical Data file

in the Government System.

3.3.1.3 S0032

Date - Date test conducted

P/F - Pass/Fail indication

Procedure - Procedure’s number and text

Comments - Comments on test results

Req # - Requirement(s) being verified

Scen # - Scenario being implemented

QA - Quality Assurance witness’ initials

Example 1 (3 of 3)

99MITRE
Al Florence

Example 2 (1 of 3)

 Requirement 1

3.3.2.1 Prior to noon each day, the FA shall accept a payment file from the enrolled
individual.

 Requirement 2

3.3.2.2 Within one hour after receipt of the payment file from the individual submitting the

payment file, the FA shall provide the individual an acknowledgement of its receipt.

 Requirement 3

3.3.2.3 Upon receipt of the payment file, the FA shall:

a. Reject the payment file if the individual is not enrolled.

b. Reject the payment file if the payment type is invalid.

c. Send the payment file to the Government if the payment file is not rejected.

100MITRE
Al Florence

Example 2 (2 of 3)

Validation Scenario

S0033 for 3.3.2.1, 3.3.2.2, 3.3.2.3. Validate that the FA receives payment file,
sends acknowledgement, correctly processes, and sends the payment file received
from the individual submitting the payment to the Government.

1. Construct:

a. enrollment records,

b. payment files - multiple sets representing enrolled and non-enrolled individuals, and
valid and invalid payment type,

2. Initiate input to the FA of the constructed files,

3. Validate that the requirements were met.

Validation Method - Demonstration

 To validate that the Financial Agent received and accepted the payment files from the

individuals submitting these files, check that the FA sends the acknowledgement.

 To validate that the FA correctly processed the payment file and sent the payment file to the

Government, check the appropriate Government files.

101MITRE
Al Florence

Validation Procedure

Date Req# Procedure P0025Scen# QAP/F

Comments

1. Enrollment Data:

a. Steve Jenkins, 244 Maple St, Fairfax, VA 20171,
334-XX-4445;

b. Jeff Hunt, 517 Main Ave, Fairfax, VA 20171,
422-XX-5555;

2. Payment Data:

a. Steve Jenkins, 334-XX-4445, Valid Payment Type;

b. Jeff Hunt, 422-XX-5555, Invalid Payment Type;

c. Barbara Jones, 335-XX-1234, Valid Payment Type;

d. Fred Smith, 275-XX-4321, Invalid Payment Type;

3. Initiate input of enrollment data to the FA System.

4. Check for enrollment file acknowledgements.

5. Initiate input of payment file to the FA System.

6. Check for payment file acknowledgements.

7. Analyze Government files for receipt and correct processing by
the FA. Only the payment file for Steve Jenkins should be in the
Government files since only Steve Jenkins was enrolled and
presented a valid payment type.

3.3.2.1 S0033

3.3.2.3

3.3.2.2

Example 2 (3 of 3)

102MITRE
Al Florence

Agenda

 Motivation - why do we care?

 Nature of Requirements - what are they?

 Creating Requirements - How do we

define them?

 Challenges - some typical problems

PART I PART II

 Requirements Management

 Independent Verification & Validation of

Requirements

 Examples of Effective Requirements Practices

» Independent Verification of Requirements

(Proper Specification of Requirements)

» Independent Validation

(Adherence to Requirements)

 Conclusion

 References

 Contact Information

103MITRE
Al Florence

End of Part II

 This half of the tutorial presented:

» Information on requirements management and IV&V

» Examples of applying some requirements practices to real projects

 Proper care and feeding of requirements is essential to project success

 Any questions?....

104MITRE
Al Florence

Agenda

 Conclusion

 References

 Contact Information

 Motivation - why do we care?

 Nature of Requirements - what are they?

 Creating Requirements - How do we

define them?

 Challenges - some typical problems

 Requirements Management

 Independent Verification & Validation

 Examples of Effective Requirements Practices

» Independent Verification of Requirements

(Proper Specification of Requirements)

» Independent Validation of Requirements

PART I PART II

105MITRE
Al Florence

Conclusion

 Applying Effective Requirements Practices to the:

» Management

» Specification

» Implementation

» Verification

» Validation

of requirements will increase the probability of developing high
quality systems that meet specified requirements within cost and
schedule.

106MITRE
Al Florence

References and Suggested Readings

 Brooch, Grady, James Rumbaugh, Ivar Jacobson. The Unified Modeling Language User Guide.

Addison-Wesley. 1999

 Capability Maturity Model Integration (CMMI ®), Version 1.3. Software Engineering Institute. 2011

 Florence, Al, Reducing Risk with the Proper Specification of Software Requirements. CrossTalk,

The Journal of Defense Software Engineering. April 2002

 Dr. Young, Ralph, Effective Requirements Practices, Addison-Wesley, 2001.

(includes over 230 references on requirements!)

 Dr. Young, Ralph, Recommended Requirements Gathering Practices. CrossTalk, The Journal of

Defense Software Engineering. April 2002

 IEEE Recommended Practices for Software Requirements Specifications. IEEE Std 830-1998,

IEEE Computer Society. October 20, 1998

107MITRE
Al Florence

Contact Information

Al Florence

florence@mitre.org

703 395 8700 – Cell

303 955 2286 – Home

