
Systems Architecting:
Practices for Agile Development in the

Systems Engineering Context

14th NDIA Systems Engineering Conference

24-27 October 2011

Tutorial 13122

Tommer R. Ender, PhD

Senior Research Engineer

tommer.ender@gtri.gatech.edu

(404) 407-8639

Tom McDermott

Dir. of Research and Dep. Dir., GTRI

tom.mcdermott@gtri.gatech.edu

(404) 407-8240

Nicholas Bollweg

Research Engineer I

nicholas.bollweg@gtri.gatech.edu

(404) 407-7207

2 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 2

Goals and Learning Objectives

 Introduce the student to methods and

practices for systems architecting

 Apply agile principles and incremental

development to architecting

 Learn novel methods for combining narrative,

visual, and specification techniques for rapid

and incremental architecture development

 Learn practical approaches to facilitate the

process introduced in this tutorial

3 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 3

Summary of Topics

 Fundamental systems architecting

 Incremental development of ill defined or

evolving systems through agile development

 Evaluating architecture quality through scenario

based methods is reviewed in the context of

satisfying business drivers

 Practical management methods are introduced

focusing on the leadership role of the systems

architect on a development team

4 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 4

Narrative Context

Capability

Heuristics

• Business Cases

• Operational Views

Scenarios

CONOPS Use

Cases

Is It Useful?

Is It Effective?

Requirements

System

Views

• Interface

specification

• Reference Modeling

Language

• Flow Diagrams

• etc…

Developers

• Environment

• Constraints

• Needs through

Use Cases

• Abstraction

• Constraints

• Patterns

• Heuristics

Architectural

Significant

Use Cases

Utility Defined

Quality Attributes

Engineering

Design Rules

Enterprise

Design Rule

Sets

Development

Rules

Does it

Provide

Value?

Stakeholders/Users

Operators

• LifeCycle

• Constraints

• Maintenance

Systems Architecting:
Practices for Agile Development in the

Systems Engineering Context

Architecting Models

6 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 6

Systems ―Architecting‖ vs. ―Engineering‖

 Systems architecting differs from systems engineering

in that it relies more on heuristic reasoning and less on

use of analytics

 There are qualitatively different problem solving

techniques required by high and low complexity levels
– The lower levels would certainly benefit from purely analytical

techniques, but those same techniques may be overwhelming at higher

levels which may benefit more from heuristics derived from experience,

or even abstraction

– It is important to concentrate on only what is essential to solve the

problem

The system should be modeled at as a high a level as possible, then
the level of abstraction should be reduced progressively as needed

7 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 7

Architecture Definitions

 Architecture: the fundamental organization of a

system embodied in its components, their

relationships to each other, and to the environment,

and the principles guiding its design and evolution

 Architecting: the activities of defining,

documenting, maintaining, improving, and certifying

proper implementation of an architecture

 Architectural Description: a collection of products

to document an architecture

Source: IEEE-1471-2000

8 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 8

Classical Architecting Methods

 Science based

– Analytic, deductive, experiment based, easily certified,

well understood, widely taught

 “Art” or practice of architecting

– Nonanalytic, inductive, difficult to certify, less understood,

seldom formally taught

– Process of insights, vision, intuitions, judgment calls,

subjective ―taste‖

– Deals with immeasurables, sanity checks

– Leads to ―unprecedented systems‖

9 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 9

Those mistakes and experience may come from one’s predecessors

Insight = Heuristics

Insight

 The ability to structure a complex situation in a way

that greatly increases understanding of it

 Guided by lessons learned from experience and

observations

 Where systems architecting becomes more an art

than a science
Success comes from wisdom…

Wisdom comes from experience…

Experience comes from mistakes

10 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 10

Heuristic Methods

 Based on prior experience and common sense

(what is sensible in a given context)

 Collective experience stated in as simple and

concise a manner as possible

 Provide practical and pragmatic guidance through

intractable or ―wicked‖ problems

11 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 11

Heuristics

 A concise statement of situational insight, lesson
learned, or design directive
– “All the really important mistakes are made the first day”

– “When partitioning a system choose so that elements have
high internal complexity and low external complexity (high
cohesion and low coupling)”

– “if the politics don’t fly, the airplane never will”

 Maier (2009) has compiled a list of ―heuristics for
systems level architecting‖ in an appendix
– Multitasking

– Scoping and planning

– Modeling

– etc…

Useful to review relevant and define

applicable heuristics before

undertaking a new effort…identify

potential roadblocks!

12 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 12

Complexity

 Complex: composed of interconnected or

interwoven parts

 System: a set of different elements so connected

or related as to perform a unique function not

performed by the elements alone

 Is a system, by definition, complex?

– Complexity: the measure of the numbers of types of

interrelationships among system elements

– the more complex a system, the more difficult to design,

build, and use

13 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 13

Normative Requirements for Architecture
Description

 The stakeholders identified must include users,

acquirers, developers, and maintainers of the system

 The architectural description must define its viewpoints,

with some specific elements required

 The system’s architecture must be documented in a set

of views in one-to-one correspondence with the

selected viewpoints, and each view must be

conformant to the requirements of its associated

viewpoint

 The architecture description document must include

any known interview inconsistencies and a rationale for

the selection of the described architecture
source: IEEE-1471-2000 ; Maier (2009)

14 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 14

Views and Viewpoints

 A View is a representation of a system from the

perspective of related concerns or issues

 A Viewpoint is a template, pattern, or specification

for constructing a view

Viewpoint consists of:

Concerns (of the Stakeholder)

Methods

The same viewpoint can be

applied to multiple systems to

produce multiple views

The same system will have

different views corresponding to

different viewpoints.

terms: IEEE-1471-2000

Graphics adapted from: Maier (2009)

15 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 15

Views and Viewpoints

 A view is a collection of models that share the

same concerns of a stakeholder

– Classical architecture: shows physical properties of a

building from a particular perspective (i.e. a floor plan)

– Systems architecting: generalizes when physical

property is not primary, but includes functionality (and

others)

 A viewpoint is an abstraction of the view across

many systems

16 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 16

Views for Describing a System

 A view describes a system w.r.t. a set of

attributes and/or concerns

 The views selected are problem dependent (i.e.

variable), however….

 Should be complete: the complete set of views

should cover all stakeholder concerns

 Should be independent: each view should capture

different piece(s) of information

» Independent? Well, kind of….(more on this later)

17 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 17

IEEE-1471-2000:
Conceptual Model of an Architectural Description

 Includes stakeholders

and their concerns as

fundamental element

 The environment

determines the

boundaries that define

the scope of the system

of interest relative to

other systems

 Viewpoints establish the

conventions by which a

view is created, depicted,

and analyzed

 Views conforms to a

viewpoint, and addresses

concern(s) of the

stakeholders through a

model
text: IEEE-1471-2000 ; Maier et al. (2004); Maier (2009)

Graphics: IEEE-1471-2000

18 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 18

Views and Viewpoints

Viewpoint represents

stakeholders, their

concerns, purpose,

intent, and

construction rules for

specifying a view

View is a read only

mechanism that

captures the model

subset that

addresses the

stakeholder concerns

– Realizes the viewpoint

– Relationships between

model elements

established in model

and not between views

pkg [package] HSUVViews [Performance View]

«view»
PerformanceView

Driver

Drive Car «viewpoint»

stakeholders="customer"

purpose="Highlight the performance of the

system."

construction rules="show performance

requirements, test cases, MOE, constraint

models, etc.; includes functional viewpoint"

Performance Viewpoint

«viewpoint»
Functional Viewpoint

id = 2

Text = The Hybrid SUV

shall have the braking,

acceleration, and off-road

capability of a typical SUV,

but have dramatically better

fuel economy.

<<requirement>>

Performance

«moe»

HSUValt1.Cos

tEffectiveness

«moe»

HSUValt1.Fuel

Economy

«moe»

HSUValt1.Zero

60Time

«moe»

HSUValt1.Car

goCapacity

«moe»

HSUValt1.Quar

terMileTime

«constraint»
EconomyEquation

«constraint»
UnitCostEquation

«constraint»
CapacityEquation

«testCase»
EPAFuel

EconomyTest

Source: ―INCOSE Evaluation: Systems Modeling Language (SysML),‖ SysML Submission Team (SST),13, 15, 20 December 2005

19 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 19

System/Architecture ―Views‖

Purpose/Objective:

What the client wants

Behavioral (or

functional): What

the system does

Managerial: The

process by which the

system is constructed

and managed

Data: The

information

retained in the

system and its

interrelationships

Performance

(objectives or

requirements):

How effectively the

system does it

Form: What the

system is

 Each view represents an aspect of the actual system

 Each view may contain several models to capture

information of the view
Source: Maier (2009)

20 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 20

Relationship between Views

 Views chosen to be independent: each view

should capture different piece(s) of information

 …But views are linked!

 Behavioral aspects dependent on form

– System produces behavior only if form supports it!

– i.e. a car can’t move without wheels

 Architect’s role here:

– ID views that are important, build and integrate

– Integration across views

21 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 21

Models: Objectives and Purpose

 Systems built to address what a client wants and

has useful purposes

 Architect balances what the client wants

(desirability of purpose)

with what can be built.

(feasibility of system to fulfill that purpose)

 Identify prioritized objectives (with the client)

– Want measurable/quantifiable requirements

– Must deal with ―abstract‖ objectives a well

22 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 22

Models: Objectives and Purpose

 Restate initial unconstrained requirements

 Want to ultimately have a ―modeling language‖

emerge

 Identify behavioral requirements (what does the

system need to do)

 Identify performance requirements as

―measurable satisfaction models‖

 Identify requirements that directly translate to

physical form

 Characteristics and behaviors may evolve; some

objectives to difficult to group as one of the above

23 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 23

Models: Form

 Represents physically identifiable elements and

interfaces of what will ultimately be built

 Includes less tangible issues

– Communication protocol standards

– Laws/regulations

– Policies

 Degrees of abstraction

– Simple exoskeleton to convey aesthetics and looks

– Tightly coupled to performance model (i.e. model for

wind tunnel test)

24 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 24

Models: Form

 Block Diagrams

– Must correspond to physically identifiable element of the

system

» If not, likely more appropriate to be part of a

behavioral model

– Examples:

» System Interconnect Diagrams: shows specific

physical elements connected

by physically identifiable

channels; can be hierarchical

Radio Control Car Wiring Diagram from:

http://www.electrokits.com/Electric-RC-Cars/RC-Car-Controller-Project

25 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 25

Models: Form

 Block Diagrams (cont’d)
– Data flow logic: who controls the flow?

» Important for interfacing to disciplines

» System activities provide information needed to enable software
architecting (notions of software concurrency and synchronization

driven by data flow discussed in later modules)

» Soft Push: sender sends, receiver must be waiting to accept

» Hard Push: act of sending interrupts the receiver, who must
accept

» Blocking Pull: receiver requests data and waits until the
sender responds and sends

» Nonblocking Pull: receiver requests data and continues on
without it while waiting for the sender to respond and send

» Hard Pull: receiver requests data, which interrupts the sender
who must respond

» Queuing Channel: sender pushes data to a ―channel‖ where it
is stored; receiver pulls from the channel store; no one is
interrupted

26 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 26

Models: Behavioral/Functional

 Describes pattern of behavior

 What the system does as opposed to what the

system is

– What the system does: models of behavior

– What the system is: models of form

 Can not always look at a scale model (of form) and

infer behavior

I can infer behavior

from this form

I can not necessarily infer

behavior from this form

27 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 27

Models: Behavioral/Functional

 Data and Event Flow Networks (cont’d)

– Examples

» Data Flow Diagram

» Finite state machine description

» Functional Flow Block Diagram

– FFBD root principles

» Functions decomposed hierarchically

» Decomposition hierarchy defined graphically

» Data elements decomposed hierarchically and defined

» Functions are data triggered

» Defined model structure avoids redundant definition

http://en.wikipedia.org/wiki/File:Finite_state_machine_example_with_comments.svg

28 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 28

Models: Performance

 Predicts how effectively an architecture satisfies

some objectives, either functional or not

 ―Non-functional” requirements: they do not

explicitly define a functional thread of operation

 Usually quantitative and measurable

 Describe system level functions: properties

possessed by the system as a whole

 Must constrain system behavior and form to

develop a quantitative performance model

29 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 29

Models: Performance

 Analytical

Lower level system

parameters and a

mathematical rule of

combination that

predicts the

performance parameter

of interest from lower

level values

 Simulation

May be used when

performance may not be

predicted through closed

form analytical models,

but more complex and

difficult to explicitly

identify

 Judgment

Used when

analytical or

simulation models

are inadequate or

infeasible

Human judgment

captured as design

heuristics

30 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 30

Models: Data

 Data may be a part of the architecture

 Defines the data that the system itself retains, and

how the relationship among the data is developed

and maintained

 Data models have origins in software development

and database development

 The need to find structure and relationships in large

collections of data will be determinants of the

system architecture

31 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 31

Models: Managerial

 Milestones, budgets, and schedules may be as

important to the architect as the technical effort

 Managerial view describes the process of

building the physical system, and tracks events as

they occur

 Models that comprise this view are standards in

project management

– Critical Path Methods/PERT

– Cost and schedule metrics

 Architect will use these to monitor processes as

systems is developed to ensure integrity

Systems of Systems Architecting

Considerations

33 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 33

Systems of Systems Architecting

 Systems of systems architectures concerned

with architectures of systems created from

other autonomous systems

 System architectures

– Concerned with people, activities, and technologies that

make up an autonomous system within an enterprise*

– Includes structures and behaviors

– Autonomous systems may interact with other

autonomous systems within an enterprise

– Autonomous systems’ core functionality not dependent

on other autonomous systems within an enterprise
*Enterprise: an association of interdependent organizations and people, supported by resources, which interact with

each other and their environment to accomplish their own goals and objectives and those of the association

Source: Cole, in Jamshidi (2009)

34 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 34

Systems of Systems Architecting

 Systems of systems architectures concerned

with architectures of systems created from

other autonomous systems

 Enterprise architectures

– Concerned with organizational resources and activities

– Includes people, information, capital, physical

infrastructure

– Consideration of constituent (autonomous) system

characteristics within the focus of the SoS architect

– Design of constituent (autonomous) systems not the

focus of the SoS architect

– SoS architect may consider multiple enterprises

 Source: Cole, in Jamshidi (2009)

35 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 35

Systems-of-Systems Architecture

 The management of relations between the system
components is an architectural issue which does not
belong to individual systems, but shared by all the involved
components

 SoS architecture acts as a framework that directs the
interaction of components with their environment, data
management, communication, and resource allocation

 The system-of-systems architecture defines the interfaces
and composition which guides its implementation and
evolution

Allocation of functionality to components and inter-component interaction,
rather than the internal workings of individual components

36 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 36

Systems-of-Systems Architecture

 Structure: Two systems are structure-related if one is a component or

basis of the other.

 Function: Two systems are function-related if one system requires

certain functions or services by another system to perform its own

function.

 Information: Two systems are information-related if requirements or

information is exchanged between the two.

 Operation: Two systems are operation-related if they are both used in

an operation scenario to jointly fulfill a mission.

 Generation: Two systems are generation-related if one system will be a

replacement of the other.

Manners by which systems and capabilities are related in a system-of-systems

Relations are determined by the interfaces between systems

37 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 37

SoS Architecture Considerations

Architecting of a

SoS warrants special

considerations

– Autonomy

– Diversity

– Integration strategy

– Data architecture

– System protection

Needs often
compete

Needs change
over time

Resources
availability

constraints the
solution space

Design
compromise is

necessary

Architectural

Design

Principles

Source: Cole, in Jamshidi (2009)

38 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 38

SoS Architecture Considerations

Autonomy

 Elements of the SoS are autonomous systems

 Each has its own

– Stakeholders

– Mission

– Management

– Budget

– etc…

 SoS integration cannot compromise the integrity of the

constituent systems…autonomy must be maintained

after SoS integration

 If autonomy of individual systems is disrupted for

the benefit of the SoS, it must be re-established
Source: Cole, in Jamshidi (2009)

39 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 39

SoS Architecture Considerations

Autonomy

 Technical autonomy
– Integrity of external interfaces (of constituent systems)

must be maintained

– Integrity of infrastructure must be maintained

» Unplanned infrastructure improvements on the SoS
level may disrupt technical autonomy at the system
level

 Operational Autonomy
– Related to organizations and business processes

– Organizations structured to operate and sustain systems
using organic business processes

– The ―heart‖ of the operational architecture of each
system, and must have autonomy

Source: Cole, in Jamshidi (2009)

40 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 40

SoS Architecture Considerations

Complexity

 The existing system “tax”
– Complexity introduced when using existing systems to

create SoS solutions

– Using existing systems to assemble an SoS is a good
starting point, but constrains the solution

– Infrastructure used to support a system may be of little
value at the SoS level (i.e. introduce complexity)

 Natural specialization
– Individual systems will want to optimize to perform their

primary function

– Will likely ―sub-optimize‖ for individual systems, which
may introduce other constraints

Source: Cole, in Jamshidi (2009)

41 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 41

SoS Architecture Considerations

Complexity

 Natural specialization (cont’d)

– Must ―bridge‖ the optimization

across system, which introduces

complexity

b

S

Wto

TiL

Vbr
’ Wlanding

’

Vbr

Wlanding

Pi & all g’s

Wto, AR, Vbr

Rfa, Rfr, U

qto, ql, Sto, Sl, Rf

cdo_sl

cdo_c, d

L/D, Wto,

Vbr

L/D, Wto

Ti. Wlanding

b

S

Wto

TiL

Vbr
’ Wlanding

’

Vbr

Wlanding

Pi & all g’s

Wto, AR, Vbr

Rfa, Rfr, U

qto, ql, Sto, Sl, Rf

cdo_sl

cdo_c, d

L/D, Wto,

Vbr

L/D, Wto

Ti. Wlanding

 Fuzzy functional architecture partitions

– The gaps and overlaps in functional responsibilities

– Preserving technical autonomy means multiple systems

within the SoS will perform similar (or identical functions)

Source: Cole, in Jamshidi (2009)

42 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 42

SoS Architecture Considerations

Diversity

 Diversity reduces Common

Node Failure weakness
Flight Control

System

(primary)

Flight Control

System

(backup)

Aircraft

Error 1:

causes failure in

primary FCS

Error 2:

causes failure in

both FCS

or

 Challenge: diversity of needs

– Constituent systems motivated by individual needs which

change over time

– Evolving business case(s): evolving stakeholder needs

changes each ―evolutionary path‖

 Challenge: environmental diversity

– Constituent systems managed separately

– Forces that shape evolution (budget, politics, leadership)

Source: Cole, in Jamshidi (2009)

43 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 43

SoS Architecture Considerations

Integration Strategy

 At the system level…

– Systems usually partitioned into elements having their

own responsibilities within that system

– Elements usually designed to be integrated within that

system

 SoS made up of autonomous systems not originally

designed as part of a component in a larger system

(or that SoS)

Source: Cole, in Jamshidi (2009)

44 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 44

SoS Architecture Considerations

Integration Strategy

 Integration issues

– Physical integration: do all the systems use compatible

interface protocols?

– Functional integration: are the various functions

performed by each system de-conflicted?

» Isolation: isolating the functions performed by one system within

the SoS from those performed by other systems

» Damping: muting certain functions to allow systems to work

together

– Semantic integration: are data and signals commonly

interpreted by the different systems?

 Source: Cole, in Jamshidi (2009)

45 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 45

SoS Architecture Considerations

Integration Strategy

 Solution: SoS Bridging

– Introducing a new system that has the responsibility of

dealing with physical, functional, and semantic

integration…acts as a ―bridge‖

– Minimizes modification to existing systems

– Less expensive up front

Existing

System

Existing

System

Existing

System

External

Systems

External

Systems

External

Systems

SoS

Bridge

New

System

“Minor”

Modifications

– Burdensome to

operations and

adds complexity

– Most common

Source: Cole, in Jamshidi (2009)

46 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 46

SoS Architecture Considerations

Integration Strategy

 Solution: SoS Refactoring

– Easier to operate and less complex that bridging

– More disruptive to individual systems

– More expensive up front

Existing

System

Existing

System

Existing

System

External

Systems

External

Systems

External

Systems

System Extensions

(not so minor

mods!)

New

Interfaces

Source: Cole, in Jamshidi (2009)

47 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 47

SoS Architecture Considerations

Data architecture

 SoS needs regarding data architecture

– Data consistency and semantics

– Persistent storage of shared data
» Data may be owned by one system, but needed across the SoS

 Single data store as an option

– Low complexity

» Low risk in terms of data integrity

» Low expense to create and manage

– Limit practicality

» Does not preserve autonomy of existing systems

» Difficult to meet required performance and availability
Source: Cole, in Jamshidi (2009)

48 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 48

SoS Architecture Considerations

Data architecture

 Uncoordinated Data Model

– Simple and economical strategy

» Requires shared data be exchanged via traditional

interfaces between systems

» Requires each system independently deal with data

structure and semantic problems

 – Problems with data structure

and semantics introduce risks

– Potential for high volume of

duplicate data

– Good if SoS exchanges low

volume of data

System System

System

Source: Cole, in Jamshidi (2009)

49 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 49

SoS Architecture Considerations

Data architecture

 Coordinated Data Model

– Mitigates the semantic problem found in the

uncoordinated data model

– Agreement between the system coordinates data format

and semantics

– Maintains simplicity of the

uncoordinated model

System System

System

Agreement to

coordinate

naming, structure,

and semantics of

common data

Source: Cole, in Jamshidi (2009)

50 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 50

SoS Architecture Considerations

Data architecture

 Federated Data Model

– Most sophisticated approach

– Best applied when there is a large amount of data shared

– Only approach that has a separate SoS data store

outside of the existing systems

System

System

System

SoS Data Repository

Data

Acceptor

Data

Provider

Shared

Data Store

– Repository contains

the shared data

– Data owned by a

system, posted to

repository into an

agreed to format

Source: Cole, in Jamshidi (2009)

51 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 51

SoS Architecture Considerations

System Protection

 Security involves allowing systems to interact

while preventing unauthorized access to system

data and resources

 Key objectives (and terminology) of security

– Confidentiality: prevent unauthorized access

– Authentication: provide a means or identifying

authorized users

– Integrity: restrict unauthorized modifications to

resources

– Nonrepudiation: guarantee identities of resource

consumers and providers

 Source: Cole, in Jamshidi (2009)

52 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 52

SoS Architecture Considerations

System Protection

 Unintentional disruption by other systems within

the SoS is the other side of protection

– Other systems may overload a system that provides a

critical function

– Fault in one system may ripple throughout the SoS

– System isolation employed for protection against such

disruptions
» Introduces a separation layer between internal subsystems of a

system and external systems

 subsystem

subsystem

subsystem S
e
p

a
ra

ti
o

n

L
a

y
e

r

External

system

External

system

Source: Cole, in Jamshidi (2009)

53 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 53

Success Factors

 Recommended architecture related factors

contributing to the success of the SoS

 Concepts apply to single systems

 Especially important to SoS!

– Robust design

– Architecture alignment

– Architecture governance

– Architecture description

Source: Cole, in Jamshidi (2009)

54 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 54

SoS Architecture Success Factors

Robust Design

 Robust designs are those that meet requirements

consistently and are insensitive to small changes in

uncontrollable variables

 Serve their intended purpose under full range of

environmental conditions

 Wide single system robust design body of knowledge

 Unique aspects to SoS architecture robustness
given that the

constituent systems

are diverse and

need to maintain

autonomy
Source: Cole, in Jamshidi (2009); and Ender et al (2010)

55 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 55

SoS Architecture Success Factors

Robust Design

 Business Case Robustness

– Needs change over time, which changes constituent

systems’ roles in the SoS

– SoS functions should be insensitive to changes in

business case for each system in the SoS

 Technological Robustness

– Related to the technological environment

– Desire insensitivity to changes in the technologies

themselves within the SoS

Source: Cole, in Jamshidi (2009)

56 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 56

SoS Architecture Success Factors

Robust Design

 Schedule Robustness

– Ability of a system to provide necessary capability to an

SoS on time

– System improvements may be delayed for technical or

financial reasons

» If that system provides the sole source of a critical

capability, system is not schedule robust

» If there is a contingency approach to meeting that

critical capability, system is schedule robust

(Redundancy? Diversity?)

 Flight Control

System

(primary)

Flight Control

System

(backup)

Aircraft

Error 1:

causes failure in

primary FCS

Error 2:

causes failure in

both FCS

or

Source: Cole, in Jamshidi (2009)

57 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 57

SoS Architecture Success Factors

Architecture Alignment

 Very probable that creating, improving, or

otherwise manipulating an SoS will introduce

disruption to autonomy of constituent systems

 Must expect disruption in this case and plan to

realign and reestablish constituent systems

– Realign organizations to function within the updated

SoS context

– Update business processes and procedures to function

within the updated SoS context

– Realign technological aspects

» Easier said then done!
Source: Cole, in Jamshidi (2009)

58 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 58

SoS Architecture Success Factors

Architecture Governance

 Changes among autonomous systems should be

coordinated within the SoS

 Constituent systems must honor a common set of

rules for functions across systems (within the SoS)

which form the basis for architecture governance

Source: Cole, in Jamshidi (2009)

59 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 59

SoS Architecture Success Factors

Architecture Governance

 Governance roles and responsibilities

– Deals with ―fuzzy partition‖ of a system’s role in the SoS

as its needs change over time

– Coordinated changes occur within the context of

managing roles and responsibilities

 Interface governance

– Deals with interfaces between systems (also ―fuzzy‖)

– Systems that share data must coordinate changes to the

data structure itself

Source: Cole, in Jamshidi (2009)

60 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 60

SoS Architecture Success Factors

Architecture Description

 Becomes important to represent the architecture of
increasingly complex systems using a well defined
model

 Architecture model provides means for
– performing analysis of system structure and behavior

– describing an implementation plan

– describing the architecture as roles are spread across
many engineers/stakeholders

 Architecture descriptions assembled through
multiple viewpoints

 Architecture frameworks provide that roadmap
for describing the system architecture

Source: Cole, in Jamshidi (2009)

Leadership and Management:

The Role of the Systems Architect

62 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 62

Perspective of the Systems Architect

Capability

Heuristics
• Business Cases

• Operational Views

Is It Useful?

Is It Effective?

Requirements

System

Views

• Interface

specification

• Reference Modeling

Language

• Flow Diagrams

• etc…

Developers

• Environment

• Constraints

• Needs through

Use Cases

• Abstraction

• Constraints

• Patterns

• Heuristics

Architectural

Significant

Use Cases

Utility Defined

Quality Attributes

Engineering

Design Rules

Enterprise

Design Rule

Sets

Development

Rules

Does it

Provide

Value?

Stakeholders

Operators

• LifeCycle

• Constraints

• Maintenance

Scenarios

CONOPS Use

Cases

63 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 63

Phases of Architecting

Changes as project moves from phase to phase

Structuring of

the unstructured

(need, solutions,

technical

possibilities)

Integration of

competing

(sub)systems

and interests

Art

Early

Rational and

Normative

Mid

Certification that

systems is

suitable for use

Art and Science

Completion

Narrative Form Specific Form
Narrative and

Measured Forms

64 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 64

Language of the Architect

Changes as project moves from phase to phase

• Heuristics

• Stories

• Con-ops

• Scenarios

• Requirements

• Behavior

• Structure

• Function

• Rules

Narrative,

Visual

Early

Visual,

Functional

Mid

• Performance

• Analysis

• Evaluation

• Utility

Participative

Completion

Narrative Form Specific Form
Narrative and

Measured Forms

65 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 65

The Narrative Form

66 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 66

Need vs. Requirement vs. Utility

 Need:
– Something that solves a perceived problem or desire; or

perceived market

– Responds to an opportunity

 Requirement
– Need expressed in

engineering terms

– Analysis conducted to validate
need versus system capabilities

– Is testable

 Utility
– Evaluation of product vs. need

– Is testable

– May not reflect requirement set

67 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 67

Concept of Operations

 Create, visualize and discuss use scenarios in

complex environments; Used as a strategic

planning tool to reduce chance of overlooking

important factors; provides balanced perspective

 Explore scenarios for clear

understanding of operational

needs and performance

requirement rationale

68 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 68

Concept of Operations (CONOPS)
 A user oriented document that describes

system characteristics of the to-be-

delivered system from the user’s

viewpoint

 Used to communicate overall

quantitative and qualitative system

characteristics to the user, buyer,

developer, and other organizational

elements (e.g., training, facilities,

staffing, and maintenance)

 Describes the user organization(s),

mission(s), and organizational

objectives from an integrated systems

point of view
Source: IEEE Std 1362-1998

69 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 69

What is a Use Case?

 Describes the desired behavior of a system and its

users

– at a superficial level of detail

– with ―sunny-day‖ and ―rainy-day‖ scenarios

– with some generalization of the roles and activities

– a set of activities within a system

 A Use Case is the set of scenarios that provides

positive value to one or more external actors

– actors are the people and/or computer systems that are

outside the system under development

– scenarios are dialogs between actors and the system

– no information about the internal design

70 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 70

The UML Use Case Diagram

 In UML (Unified Modeling
Language), it is possible to
show a picture of the system
as a group of use cases:

– each stick figure is an actor

– each ellipse represents a
use case

 The diagram is deceptively
simple

– behind each ellipse, there
might be a whole bunch of
scenarios – sunny-day,
alternatives, failures

– the diagram is only a
―summary‖

Customer

Bank Employee

withdraw cash

check balance

service ATM

ATM

71 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 71

Stories

 A story is a high-level definition of a requirement

– Enough information so the developer can produce a

reasonable estimate of the effort to implement it

– Not so much that it requires a lengthy effort to agree on

the specification of it

72 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 72

What Does ―AGILE‖ Imply?

 Agile:

– quick and well-coordinated in movement; lithe

– marked by an ability to think quickly; mentally acute or

aware

– characterized by quickness, lightness, and ease of

movement; nimble

 Agile Software Development:

– a group of software development methodologies based

on iterative and incremental development, where

requirements and solutions evolve through collaboration

between customer and self-organizing, cross-functional

teams

73 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 73

The Agile Manifesto

74 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 74

Agile Applied to Systems Engineering

 Agile development methods require a different
paradigm for project management, focused on small,
frequent incremental releases

 It is not clear that Agile Development methods, as
developed for software programming, apply well to
systems engineering
– Agile software development assumes a mature and tested

hardware baseline is available

– Most experience is limited to IT-based systems

– For larger complex hardware/software systems it is difficult to
divide the work breakdown into 30 day incremental tasks

– It is difficult for organizations to manage simultaneously the
planning cultures of traditional development and agile
development

 How do we apply agile techniques to SE?

75 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 75

Scaling Agile Approaches

 Separate type of outcome

– Tangible outcomes: physical artifacts

– Intangible outcomes: information, including SW (not

manufactured)

 Evaluate type of work

– Inventive: result of creative input, exploratory in nature

– Engineering: science & engineering to produce outcomes

– Craft: repetitive tasks around work that has been done

before

 These drive how you define your scheduling model

and approach Aaron J. Shenhar and Dov Dvir ,

Reinventing Project Management:

The Diamond Approach to

Successful Growth and Innovation

76 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 76

N2 on Managing versus Type

Tangible Intangible Inventive Engineering Craft

Tangible Risk of forcing all

development down

same path

High risk of

customer

dissatisfaction

High risk of

technology maturity

issues

Risk of being late

to market

Intangible Use multiple

development

models

High risk of

customer

dissatisfaction

High risk of utility or

use case issues

Generally low risk

unless innovation

is a premium

Inventive Build several

prototypes and test

with customers

Case for

incremental

development with

frequent customer

interaction

Risk of immature

requirements

leading to poor use

case design

Risk of disruptive

design or process

issues

Engineering Evolutionary

development

approach with

several fielded

increments

Early increments

focus on system

use cases and

utility

Use M&S to

focus customer

on use cases and

utility

Risk of cost or

quality issues

Craft Waterfall approach

or evolutions

focused on

improved cost &

quality

Accelerate fielded

systems to

evaluate utility and

maturity

Early prototypes

to mature

processes

Early prototypes to

prove technology

77 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 77

Keys to Agile SE

 The architectural framework is at the center, and

key to all other success

 Rapid development of architectural rules

 Rapid evolution of architectural quality attributes

 A model based environment for developing the

architecture and evaluating applications

 Close connection between the developer and

stakeholders, direct interaction in the process

78 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 78

The Agile Architect

1. Deliver working solutions

2. Maximize stakeholder value

3. Find solutions which meet the goals of all

stakeholders

4. Enable the next effort

5. Manage change and complexity

The Architect's primary objective is a working solution

The best solution make not need significant

development

http://www.agilearchitect.org/agile/principles.htm

79 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 79

The Architect’s Decisions

 Determine the Application Type
– Services, clients, data, scientific, control, etc.

 Determine the Deployment Strategy
– Embedded, General Purpose, Client-server, Cloud, etc.

 Determine the Appropriate Technologies
– Execution, development, infrastructure, skills

 Determine the Quality Attributes
– Performance, ilities, development

 Determine the Crosscutting Concerns
– Resource management: Communication, memory, etc.

– Exception management: safety, reliability, error capture

– Instrumentation/data visibility
Microsoft Application Architecture Guide, 2nd Edition (Chapters 1-4)

80 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 80

Architecture Concerns

Beyond the requirements document:

 How will the user experience be managed?

 How will the development be managed?

 How will the software be deployed and managed?

 How will the application support update and

modification over time?

 What similar architectural trends or patterns exist

that might influence development or deployment?

 What are other key quality attributes, such as

security, performance, modifiability, portability,

etc.?

81 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 81

Key Agile Architecture Tenets Today

 Build to change instead of building to last

– Design in flexibility for growth

 Model to analyze and reduce risk

– Views, visualizations, modeling languages, design tools

 Use models and visualizations as a communication

and collaboration tool

– Views and visualizations for user buy-in

 Identify key engineering decisions

– Views, design patterns, model architectures

 Use an incremental and iterative approach to refine

your architecture
Microsoft Application Architecture Guide, 2nd Edition (Chapters 1-4)

82 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 82

Know the Architecture Landscape

 Create User empowerment
– Focus on the user experience

– Allow the user to define how they interact

– Use scenarios to design simple user interactions

 Follow market maturity
– Take advantage of existing platform and technology options

– Focus design on what is uniquely valuable in your application, reuse
elsewhere

– Use patterns that provide proven solutions for common problems

 Develop flexible designs
– Loose coupling to allow reuse and to improve maintainability

– Pluggable or service oriented designs to provide future extensibility

 Stay abreast of future technology trends
– Information services, media convergence, device convergence,

computing/networks, clouds, etc.
Microsoft Application Architecture Guide, 2nd Edition (Chapters 1-4)

83 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 83

Four Architecture Principles

1. Separation of Concerns
– Separate aspects of a problem

– Minimize interaction points between modules

2. Abstraction
– Build hierarchical layers of abstraction

– Do not duplicate functions

3. Simplicity
– Make it easy to understand, check, and modify

– One function or feature (or at least a cohesive set) per module

– Only design what is necessary

4. Restriction of information
– Localization of information

– One modules internal details hidden from other modules

– Basic principle of object oriented design

These Scale to Anything!

84 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 84

Architectural Quality Attributes

 How do I evaluate the quality of the architecture?

– Design drivers

» Requirements, functions

» Hard performance measures

– Development drivers

» Development planning

» Coordination of work teams

– Business model drivers

» Develop or reuse

» Soft performance measures

» ―ilities‖

85 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 85

Architectural Quality Attributes

 How do I evaluate the quality of the architecture?

– Design drivers

» Requirements, functions

» Hard performance measures

– Development drivers

» Development planning

» Coordination of work teams

– Business model drivers

» Develop or reuse

» Soft performance measures

» ―ilities‖

Separation

of Concerns

Abstraction

Simplicity

Information

Restriction

86 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 86

Example Quality Factors
and Architectural Methods

 Safety

 Security

 Robustness

 Resiliency

 Availability

 Portability

 Reuse

 Openness

 Modifiability

 Testability

 Maintainability

 Separation, simplicity

 Abstraction, restriction

 Distribution

 Redundancy

 Health monitoring

 Virtualization

 Encapsulation

 Standardization

 Design rules, patterns

 Partitioning

 documentation

87 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 87

Each quality attribute characterization is divided into three categories:

external stimuli, architectural decisions, and responses.

Quality Attribute Characterization

 External stimuli (or just stimuli for short) are the events that

cause the architecture to respond or change.

 To analyze an architecture for adherence to quality

requirements, those requirements need to be expressed in

terms that are concrete and measurable or observable.

These measurable/observable quantities are described in

the responses section of the attribute characterization.

 Architectural decisions are those aspects of an

architecture - components, connectors, and their properties

- that have a direct impact on achieving attribute responses.

88 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 88

Techniques for Architecture Evaluation

 Use cases and usage scenarios, functional

requirements, non-functional requirements,

technological requirements, the target

deployment environment, and other

constraints produce:

 A list of Architecturally Significant

Use Cases

 These feed a scenario-based

evaluation process

3. Create
Application
Overview

4. Identify
Key Issues

5. Define
Candidate
Solutions

2. Identify
Key

Scenarios 1. Identify

Architecture

Objectives

Source: Microsoft Application Architecture Guide, 2nd Edition (Chapters 1-4)

89 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 89

Techniques for Architecture and Design

1. Identify Architecture Objectives.

– User, business, development

2. Identify Key Scenarios.

– Use-case scenarios focus your design and allow architecture evaluation

3. Create Application Overview.

– Identify application type, deployment architecture, architecture styles,

and technologies

4. Identify Key Issues.

– based on quality attributes and crosscutting concerns

5. Define Candidate Solutions.

– Create an architecture prototype

Source: Microsoft Application Architecture Guide, 2nd Edition (Chapters 1-4)

90 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 90

Scenario-Based Evaluation Methods
 Software Architecture Analysis Method (SAAM)

– SAAM was originally designed for assessing modifiability, but later was extended for reviewing

architecture with respect to quality attributes such as modifiability, portability, extensibility,

integratability, and functional coverage.

 Architecture Tradeoff Analysis Method (ATAM)

– ATAM is a refined and improved version of SAAM that helps you review architectural decisions with

respect to the quality attributes requirements, and how well they satisfy particular quality goals.

 Active Design Review (ADR)

– ADR is best suited for incomplete or in-progress architectures. The main difference is that the review

is more focused on a set of issues or individual sections of the architecture at a time, rather than

performing a general review.

 Active Reviews of Intermediate Designs (ARID)

– ARID combines the ADR aspect of reviewing in-progress architecture with a focus on a set of issues,

and the ATAM and SAAM approach of scenario-based review focused on quality attributes.

 Cost Benefit Analysis Method (CBAM)

– This CBAM focuses on analyzing the costs, benefits, and schedule implications of architectural

decisions.

 Architecture Level Modifiability Analysis (ALMA)

– ALMA evaluates the modifiability of architecture for business information systems (BIS).

 Family Architecture Assessment Method (FAAM)

– FAAM evaluates information system family architectures for interoperability and extensibility.
Source: Microsoft Application Architecture Guide, 2nd Edition (Chapters 1-4)

91 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 91

ATAM Methods: Presentation

 1. Present the ATAM. The method is described to the

assembled stakeholders (typically customer

representatives, the architect or architecture team, user

representatives, maintainers, administrators, managers,

testers, integrators, etc.).

 2. Present business drivers. The project manager

describes what business goals are motivating the

development effort and hence what will be the primary

architectural drivers (e.g., high availability or time to market

or high security).

 3. Present the architecture. The architect will describe the

proposed architecture, focusing on how it addresses the

business drivers.

Source: Carnegie Mellon Software Engineering Institute www.sei.org

92 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 92

ATAM Methods: Investigation and Analysis

 4. Identify architectural approaches. Architectural approaches

are identified by the architect, but are not analyzed.

 5. Generate quality attribute utility tree. The quality factors that

comprise system ―utility‖ (performance, availability, security,

modifiability, etc.) are elicited, specified down to the level of

scenarios, annotated with stimuli and responses, and prioritized.

 6. Analyze architectural approaches. Based upon the high-

priority factors identified in Step 5, the architectural approaches

that address those factors are elicited and analyzed (for example,

an architectural approach aimed at meeting performance goals

will be subjected to a performance analysis). During this step

architectural risks, sensitivity points, and tradeoff points are

identified.

Source: Carnegie Mellon Software Engineering Institute www.sei.org

93 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 93

ATAM Methods: Testing and Results

 7. Brainstorm and prioritize scenarios. Based upon the exemplar

scenarios generated in the utility tree step, a larger set of scenarios is

elicited from the entire group of stakeholders. This set of scenarios is

prioritized via a voting process involving the entire stakeholder group.

 8. Analyze architectural approaches. This step reiterates step 6, but

here the highly ranked scenarios from Step 7 are considered to be test

cases for the analysis of the architectural approaches determined thus

far. These test case scenarios may uncover additional architectural

approaches, risks, sensitivity points, and tradeoff points which are then

documented.

 9. Present results. Based upon the information collected in the ATAM

(styles, scenarios, attribute-specific questions, the utility tree, risks,

sensitivity points, tradeoffs) the ATAM team presents the findings to the

assembled stakeholders and potentially writes a report detailing this

information along with any proposed mitigation strategies.

Source: Carnegie Mellon Software Engineering Institute www.sei.org

94 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 94

TiVo Architecture Example

User

Interface

Features

Processing

Digital

Storage

Video

Interfaces &

Conversion

Remote

Server

Connections

Video Feeds

Internet Service

Provider

TiVo Box

Protected Kernel

Middleware

User

Applications

Interface

Services

TiVo User

Application

Servers

Server Functions

User

Applications

Interface

Services

System

Architecture

Software

Architecture

95 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 95

The Role of the System Architect

 The System Architect is more a leadership and management
role than a technical role

 Architects need experience, and a blend of management and
leadership disciplines

 Communication and vision require leadership capacity
– The architect holds the architectural vision, often their own

– The architect makes high-level design decisions around interfaces,
functional partitioning, and interactions

– The architect must communicate these effectively, often visually

 The architect’s primary tasks are rule-setting
– The architect must direct technical standards, including design

standards, tools, or platforms,

– These should be based on business goals rather than to place arbitrary
restrictions on the choices of developers.

96 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 96

Leadership Competencies

 Experience and judgment
– The architect must balance the customer’s view of the system with their

organization’s business view of the system

 Communications
– The architecture is presented in visuals to all stakeholders

– The architecture is derived to written guidelines and design rules for the
team

 Leadership and Systems Thinking
– The architecture is the high level vision of the system

– The architecture is defined more by heuristics than requirements

– The architecture definition contains a number of soft requirements that
have to be evaluated in collaborative groups

 Management
– The architect ensures the design team follows design standards

Architecting Case Study:

Next Generation Disaster Monitoring

Constellation (NGDMC)

Source: Bollweg, N., Simonetta, L., Pihera, L.D., and King, S., ―Systems Engineering

Management Plan: Next Generation Disaster Monitoring Constellation,‖ ASE 6006

Systems Engineering Lab, Fall 2010, Georgia Institute of Technology.

98 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 98

Needs Based Architecture
Development

USE CASES

OV-1

OV-2

99 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 99

Requirements Traceability to Architecture

100 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 100

Programmatic Constraints

101 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 101

Programmatic Overview

102 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 102

What is the architect’s view here?

103 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 103

Science and Instruments Traceability Matrix

104 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 104

Mission Architecture

105 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 105

Functional Flow

106 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 106

Functional Flow

107 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 107

Constraints

108 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 108

Constraints

109 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 109

SoS / subsystem view

110 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 110

External Constraints

111 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 111

Internal Constraints

Conclusions

113 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 113

Perspective of the Systems Architect

Capability

Heuristics

• Business Cases

• Operational Views

Scenarios

CONOPS Use

Cases

Is It Useful?

Is It Effective?

Requirements

System

Views

• Interface

specification

• Reference Modeling

Language

• Flow Diagrams

• etc…

Developers

• Environment

• Constraints

• Needs through

Use Cases

• Abstraction

• Constraints

• Patterns

• Heuristics

Architectural

Significant

Use Cases

Utility Defined

Quality Attributes

Engineering

Design Rules

Enterprise

Design Rule

Sets

Development

Rules

Does it

Provide

Value?

Stakeholders/Users

Operators

• LifeCycle

• Constraints

• Maintenance

114 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 114

Summary and Conclusions

 Classic systems architecting provides

fundamental representation through views and view

points

 Incremental development of ill defined or evolving

systems through agile development

 Scenario based methods for evaluating quality

are effective in the context of satisfying business

drivers

 Architect serves as a leader on the development

team, employing practical management methods

115 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 115

Review of Tutorial Goals

 Introduce the student to methods and practices

for systems architecting

 Apply agile principles and incremental

development to architecting

 Learn novel methods for combining narrative,

visual, and specification techniques for rapid and

incremental architecture development

 Learn practical approaches to facilitate the

process introduced in this tutorial

116 2011 NDIA SE Conference: Tutorial 13122 – Systems Architecting Copyright © Georgia Tech. All Rights Reserved. 116

Primary References*

 Mark W. Maier, The Art of Systems Architecting, Third

Edition, CRC Press, 2009.

 Mo Jamshidi (Ed.), Systems of Systems Engineering:

Principles and Applications, CRC Press, 2009.

 IEEE-STD-1471-2000, ―Systems and software

engineering —Recommended practice for architectural

description of software-intensive systems‖

 Kossiakoff, A. and Sweet, W.N., Systems Engineering

Principles and Practice, John Wiley & Sons, 2003.

 Martin, R.C., Agile Software Development, Principles,

Patterns, and Practices, Prentice Hall, 2002.

* Other references used in this tutorial are cited on appropriate slides

