
Technical Basis of

Model Driven Engineering

The authors’ affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to

convey or imply MITRE's concurrence with, or support for, the positions, opinions or view points expressed by these authors.

NDIA Systems Engineering Conference 2011

MITRE

Dr. William Bail

The MITRE Corporation

NAVSEA PEO IWS

The University of Maryland

24 Oct 2011

2

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Agenda

 Overview of tutorial

 Models

 Model Driven Engineering (MDE)

 Overview of software development activities

 Software development artifacts

 Model Driven Architecture® (MDA®)

 Assessment

 Recommendations

3

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Overview of tutorial

 Intend to provide a perspective on the underlying

nature of model driven engineering

– What does it really do for us?

 Cover

– nature of models

– the concepts of model driven engineering and where they fit

into traditional software development life cycle

– advantages and limitations of MDE

– considerations in applying MDE

– basic economics of MDE

 Will not cover

– Specific tools and approaches, “how-to”, what to buy

 Focus is on underlying principles

4

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Agenda

 Overview of tutorial

 Models

 Model Driven Engineering (MDE)

 Overview of software development activities

 Software development artifacts

 Model Driven Architecture® (MDA®)

 Assessment

 Recommendations

5

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Terminology – models

 Model

– A representation of an object that captures some (but not all) of

the object’s attributes

 Models are not complete (by design and intent)

– They do not capture ALL attributes of the object

– Just the ones that are “useful” or “of interest”

– If a model captured all attributes, would be the same as

replicating the object – defeats purpose

 Models are used to reason about an object (e.g., a

system)

– to infer its characteristics

– e.g., use a model to infer how hard it will be to build the system

– e.g., use a model to infer how well the system will perform

6

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Two categories of models

 Analytic models

– used to infer features of the software system based on

structure or algorithms

 e.g., block diagram of a system, Unified Modeling

Language ® UML class diagram, …

 Executable (or behavioral) models

– used to infer characteristics of the system’s behavior based on

simulation/execution of parts of the system

 Some models can serve both roles

 Others are limited to a single role unless they are

enhanced

7

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Sample models (page 1 of 5)

 Create a scale model of a race car to measure its behavior

in a wind tunnel

 This is an executable model

– We are exercising an aspect of the system

 If we wanted an analytic model, we would

– Express the shape of the race car mathematically

– Apply known aerodynamics effects to the shape

– Infer car’s behavior based on the analysis

8

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Sample models (page 2 of 5)

 Create a model of one system to assist in developing

and testing another system with which it will interact

 This is an executable model

– We are actively simulating the environment in which a system

will operate, using a model of the environment

– We are executing the system (or a model of the system)

Windmill system

Model of Windmill

system inputs and

outputs running

on computer

System under

developmentLooks like

real system

9

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Sample models (page 3 of 5)

 Build a scale model to assess the design of a building

before it is built

 This is an analytic model

– We are assessing the building’s characteristics based on its

structure, to analyze

 How hard it might be to build

 How convenient it might be for people to move about

within the building (e.g., fire escapes)

10

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Sample models (page 4 of 5)

 Simple Physics – game for the iPhone

11

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Sample models (page 5 of 5)

 Create architectural design in AADL (Architecture

Analysis and Design Language) of a system, to include

components and their interconnections

 Based on projected I/O rates and interconnection

capacities, project expected performance of system

 This is an analytic model

– We are assessing the design’s potential data throughput and

latency based on its structure

12

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

More sample models

 Build a model of a hardware VLSI chip in VHDL to

assess whether the design will be effective

 Build a brassboard of a single board computer to

assess its characteristics

 Build software prototypes to

– Validate operational concepts, assess requirements and user

interfaces

– Explore alternative design approaches

– Refine test approaches

 Write software source code that computes position

from GPS satellites

– The code is a model of the actual product

This last sample is key to how we view MDE and

software development

13

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Software programs as models

 A piece of software is a model

– Sometimes even an executable model

 Written in a programming language with precise

semantics (so that the computer knows what to do)

 The program models the execution object (the algorithm)

 Consider – code that contains all procedure interfaces but

no code bodies

– Models the program structure (architecture)

 Consider – code that contains procedure bodies that

contain non-optimized code for selected algorithms

– Models the procedure’s functional behavior but not its

performance

14

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Code to executables

 Finished source code is still a model

– Defines all semantics at some level but still requires additional

detail (e.g., run-time libraries)

– Source code is not complete

Source

code

Object

code

Executable

code

Compiler
Linker/

loader

model of desired

computation

lower-level models

add detail

e.g., C++,

Ada, Java

Compiler

libraries

run-time

libraries

15

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

But wait – there’s more…

 The final product is the system

– Fully integrated with all of its necessary parts to make it

complete

Source

code

Object

code

Executable

code

Compiler
Linker/

loader

model of desired

computation

lower-level models

add detail

e.g., C++,

Ada, Java

Compiler

libraries

run-time

libraries

Operating system

Firmware

Processor

16

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Prototypes

 A software prototype is a form of model

 Created to investigate a specific aspect of the system-

under-development

– and then thrown away (or should be)

– Generally not designed to be production-quality or complete

– e.g., usually omits error handling and IA considerations, coding

standards, documentation, …

– Adding production-quality features after the fact is usually not

cost-effective

 Sample uses

– Evaluate user interfaces, perform usability studies

– Investigate alternative design structures

– Measure alternative code patterns

– Evaluate algorithms

17

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Useful items that can be modeled

 System environment – capture aspects of the system’s

operational environment to aid in requirements

definition and testing

 System design – describe the software design to

reason about how the software will behave (structural

modeling)

 System behavior – simulate the system’s behavior for

analysis and refinement (behavioral modeling)

 User interfaces – capture aspects of the user’s

interface and present to the users to determine

suitability

– Can be static images or dynamic simulations

 Many others….

18

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

When and where models can be used

 At all levels of development

– Software

– Systems

– Systems of systems (SoS)

 During all activities performed as a part of software

development (ref: IEEE/EIA 12207.0)

– Software requirements analysis

– Software architectural design

– Software detailed design

– Software coding and testing

– Software integration

– Software qualification testing

19

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Where else….

 As well as all other

processes and activities

defined by IEEE/EIA

12207.0

Process Activities

Acquisition Initiation

Request-for-proposal [-tender]

preparation

Contract preparation and update

Supplier monitoring

Acceptance and completion

Supply Initiation

Preparation of response

Contract

Planning

Execution and control

Review and evaluation

Delivery and completion

Development Process implementation

System requirements analysis

System architectural design

Software requirements analysis

Software architectural design

Software detailed design

Software coding and testing

Software integration

Software qualification testing

System integration

System qualification testing

Software installation

Software acceptance support

Operation Process implementation

Operational testing

System operation

User support

Maintenance Process implementation

Problem and modification analysis

Modification implementation

Maintenance review/acceptance

Migration

Software retirement

20

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Agenda

 Overview of tutorial

 Models

 Model Driven Engineering (MDE)

 Overview of software development activities

 Software development artifacts

 Model Driven Architecture® (MDA®)

 Assessment

 Recommendations

21

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Model Driven Engineering

 A development strategy that uses models as stepping

stones to creating the final product

 Models are iteratively refined and matured, with more

detail added, until the model becomes the product

– Rather than throwing the model away after each iteration

 Requires associated tools to transform between stages

 Advantages

– Reduces defect content, since humans separated from the

transformation process (humans make mistakes which result in

latent defects)

– Reduces rework, thereby reducing cost and time-to-deployment

– Increases predictability, by relying on tools rather than humans

Tools cannot add information –
they can only transform

22

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Sanity-check

 Note that this includes what we do today

– Particularly with incremental and iterative development

– Each iteration product goes through increasing detail

(design, write code, verify)+n

 Each iteration produces a model of the final system

– Not the complete product

– but maturing towards that product

 Our notion of a model has evolved

– and continues to evolve

 MDE aims at exploiting the power of modeling and

pushing practice to the “left”

23

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Model Driven Engineering (MDE)

 Term coined by Prof. Doug Schmidt/Vanderbilt

University

– Ref: Schmidt, Douglas C. “Model-Driven Engineering”. IEEE

Computer, 39(2), February 2006.

 Covers many specific types of techniques and tools

– e.g., Model Driven Architecture , Model Driven Development ,

Model Integrated Engineering, Model Based Programming™…

– e.g., OMG Model Driven Architecture® MDA , Microsoft

Domain Specific Language (DSL) Tools (Visual Studio 2005),

Lockheed-Martin’s Model Centric Software Development

(MCSD), others…

24

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Core elements of MDE

 Modeling languages

– Used to define the models, i.e., the structures and algorithms

of the system being modeled/developed

 Transformation engine and generator tools

to assist in

– Building the models

– Maturing the models as more information is embedded

– Constructing the system by transforming the models to source

code/executable form

Build/modify

Analyze

Model

Transform

System

25

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Modeling languages

 Sometimes called “notations”

 Used to express the attributes of the entity being modeled

 Two types

– Descriptive (used to create analytic models)

 Express system attributes but requires analysis to make

inferences about system behavior and attributes

 Often do not provide complete semantics. e.g., core UML

– Semantic (used to create executable models)

 Express system attributes including both structure and

behavior

 If semantics are sufficiently rich and precise, semantic models

can be executable

 e.g., UML Action Semantics, Ada, Java, C++, …

26

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Language forms

 Language pedigree

– Most common but less precise are natural languages

– Most useful are artificial languages

 Textual

– Expressed in text (e.g., Ada, C++, Java, AADL, …)

– Generally defined by context-free grammars

 Constrained by description to be context sensitive

– Potential straightforward mapping from text to semantics

– Can be directly processed by tools

 Graphical

– Expressed as diagrams and images (e.g., UML, Petri Nets, …)

– Form and semantics defined by exemplars

– Must be mapped to text to be processed

 Some have both forms (e.g., AADL, EXPRESS – a data

modeling language)

27

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Impact of form

 Textual languages

– Often harder to read and understand

– Tend to be more precise semantically

– Can be directly processed

 Graphical languages

– Tend to be easier to understand (but not always)

– In general, less precise semantically due to potential variations

in presentation

 Exceptions exist – State Diagrams, Petri Nets

– Cannot be directly processed – need to be converted into a

text form

 Languages need both forms to be fully expressive

– And have consistent precise semantics in both forms

28

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Important language attributes

 Level of standardization – if language is not standard,

risk of getting locked into a specific vendor and model

 Precision of definition – ambiguous or imprecise

language definitions can lead to ineffective models and

non-standard implementations

 Popularity – using rarely-used languages, even if

adhering to standards, runs the risk of being locked-in

 Completeness – if a language is incomplete, risk of not

being able to express important system attributes

 Suitability – language should be appropriate for the

application domain being modeled

 Level – if language is too low-level (such as C/C++),

model tightly linked with implementation

29

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Sample modeling languages

 SysML – a domain-specific visual modeling language for systems

engineering applications

 UML, UML2 – Unified Modeling Language, recently updated with new

standard, visual modeling language primarily for object-oriented software

development

 AADL – Architecture Analysis and Design Language

 MATLAB – tool-based language primarily for mathematical modeling

 Petri Nets – used to model discrete distributed systems

 IDEF – including IDEF0 for functional modeling, and IDEF1 for information

modeling

 StateCharts – based on state machines, extended by Harel, supported by

a toolset

 CSP (Communicating Sequential Processes) – used to model

synchronization among concurrent processes

 pUML – Precise UML – extension of UML to correct its imprecision and

ambiguity

 MAML – Multi-Agent Modeling Language – derivative of Swarm, extension

of Objective-C

30

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Role of “meta-languages”

 Also called “metamodels”

 You may see this term regarding the development of

models

– Fancy term for a common concept

 Denotes notations used to define other languages

 Examples

– EBNF (Extended Backus-Naur Form) – standardized by ISO/IEC

Standard 14977:1966

 Used to define language syntax

– OMG MOF (Meta Object Facility) – used to define UML

 Multiple levels exist

– Metamodels, metametamodels, metametametametamodels,

… m20models…

31

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Meta-model layers

The objects that we wish to

describe.

A description of the objects.

This layer defines a model of

the system and uses the

modeling language.

A definition of the structure and

semantics of the modeling

language, e.g. definition of UML.

A definition of the structure and

semantics of the notation used to

define the modeling languages.

e.g. the notation used in M2

Information Object Layer

M0

Model Layer

M1

Meta- Model Layer

M2

Meta Meta-Model Layer

M3

Domestic

Animals

Farm WildDomesticDomestic

AnimalsAnimals

FarmFarm WildWild

32

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Example of metamodel levels

Definition of BNF

(ISO/IEC 14977)

Definition of Ada

using BNF

(MIL STD 1815A)

Ada or C++ code used to

define data structures for

personnel records

Personnel records in a

database system

populated with data

BNF

Ada C++

Ada

code

C++

code

Name Emp-Num Position Date-of-hire Department

Fred 36 Mgr 3/1/2003 Sales

Helen 1004 CEO 5/2/2003 Corp

Cynthia 899 CIO 6/1/2003 Manuf

John 722 Mkt 4/1/2003 Sales

Ralph 234 Drone 12/1/2003 Manuf

class Employee

{

string Name;

unsigned EmpNum;

…

};

e.g.,

Meta Meta

Model

Meta

Model

Model

Information

Object

33

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Modeling tools

 Used to develop, analyze, and refine model products

 Three types

– Manipulation tools – which help in defining, enhancing, and

refining the model as it evolves (e.g., Rational Rose RT)

– Analytic tools – which aid in analyzing the model to determine

properties (e.g., MATLAB)

 May involve simple analysis of structure or full simulation

of behavior

– Transformation tools - which convert/ translate/ transform the

model into something that can be executed (e.g., Kennedy-

Carter iUML), Rose RT, Rhapsody, PathMate)

 Some tools combine these features

34

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Important tool attributes

 Level of standardization – tool must work with standard

formats to avoid risk of getting locked into specific vendors

 Completeness – tool must be able to exploit full capabilities

of modeling language

 Suitability – tool should be appropriate for the application

domain being modeled

 Confidence – tools must be certified to be correct so that

trust can be placed on its operation

 Ease of use – tools operation must be straightforward and

require minimal human intervention

 Stability – tool must be mature and stable to avoid constant

updates

 Predictability – tool must incorporate minimal tailorability of

core elements, to ensure that process is repeatable

35

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Trade-offs with tools and languages

 Projects need to balance language and tool attributes

– Not all potential system features are likely to be attained in any

one tool/language

– Need to perform trade-offs to weigh risk against benefits

 State-of-the-practice is continuously maturing

– So balance of attributes shifting from day-to-day

 Standardization potentially a big issue

– Standards must be precise and clearly defined

– and undergo an open community review process

(e.g., ISO, IEEE, SAE, …)

– Some level of agreement needs to be achieved – not always

easy!

– Particularly important with MDE “action languages”

36

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

MDE legacy (part 1 of 3)

 MDE is not new

– The concepts and the tools have been around for decades

– We’ve done this before

 e.g., Autocoding Toolkit - originated in mid-1980s

– Developed by MCCI (a company in Arlington, Virginia, USA)

– Software modeled using data flow diagrams with the

Processing Graph Method

 Using SPGN – Signal Processing Graph Notation

– Models were executable to verify correctness

– “Automatically” translated into higher-level language for

execution on target computers

– Produces C or Ada source code

– Info at

http://www.mdatechnology.net/update.aspx?id=a5126

37

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

MDE legacy (part 2 of 3)

 e.g., database schema generators

 Uses Interface Definition Languages (IDL) to

automatically generate code for database access

DBMS

Software

source

code

IDL

Software

source

code

schema

generator

38

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

MDE legacy (part 3 of 3)

 e.g., GUI generators

GUI generator

Application

code

Select A

Select B

Select C

Select D

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120 140 160 180

abc def wwd sssw sdc = fe

s9 3432 ds92

ss = swe34 sawqaw sin

saasxas ss

39

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Agenda

 Overview of tutorial

 Models

 Model Driven Engineering (MDE)

 Overview of software development activities

 Software development artifacts

 Model Driven Architecture® (MDA®)

 Assessment

 Recommendations

40

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Intro to this section

 Content of this section may seem repetitive and

obvious

– “Software Engineering 101”

 But need to emphasize certain aspects of development

– to show how and where they are / can be affected by following

a model-driven approach

 Establishes a context for the MDE discussion

 Helps to highlight where modeling techniques can

provide benefits

– Let’s identify where they can help

 Impact of MDE is subtle yet significant

 Applying MDE will result in changes to how we perform

development

41

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Software development

 Development of software generally

– starts with an allocation of requirements to the software

– ends with the completion of the product that implements those

requirements

 The software development process involves six activities

as defined by IEEE/EIA Std. 12207

 Each activity involves different sets of issues and

concepts, and can be clearly differentiated (but are

tightly interdependent)

– e.g., requirements analysis ≠ detailed design

 These activities used to be called “phases” (e.g., the

“Waterfall” approach)

– but are now generally applied incrementally and iteratively rather

than sequentially

42

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Incremental vs iterative development

 *Incremental – a scheduling strategy in which various

parts of the system are developed at different times

and integrated as they are completed

– Each part developed once

 *Iterative – a rework scheduling strategy in which time

is set aside to revise and improve parts of the system

– Each part developed once and iteratively revised and improved

over time

 Development plans can be one, the other, or both

 Modeling is a key tool to support incremental and

iterative development efforts

– Particularly when models are iteratively refined over

development process

* Cockburn, Alistair. “Using Both Incremental and Iterative Development”.

Crosstalk, May 2008. http://www.stsc.hill.af.mil/crosstalk/2008/05/0805Cockburn.html

43

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Software maintenance

 Maintenance is also an important activity

– Begins after development is complete

 Historically consumes 50-80% of total life cycle cost

 Within IEEE/EIA 12207, the maintenance process is

separate from the development process

 Focuses on

– Defect detection based on anomaly reports

– Defect correction based on modification analysis

– Adaptation to changes in environment

– Enhancement/improvement of capabilities

44

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Core software development activities

 System architectural design – identify the system components

(software and hardware) that will form the system

 Requirements analysis – determine the externally-visible behavior of

the software elements (CSCIs)

 Architectural design – identify the software components that will form

the CSCIs, and the interrelationships between these components

 Detailed design – determine the software modules and units that

constitute the software components

 Coding and testing – create the modules and units in code and verify

that the units are correctly written

 Integration – build the components and CSCIs from the units, and

verify that the integrated pieces are correct

 Qualification testing – verify that the CSCIs are correctly built and

implement the assigned requirements

 System integration – support integration of the system CSCIs and

HWCIs, correcting SW defects when discovered

C
o

re

s
o

ft
w

a
re

 a
c
ti

vi
ti

e
s

Based on IEEE/EIA Std 12207

45

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

System architectural design

 Historically precedes software development

 Defines overall architecture of system, including

software CIs, their location in the system, their means

of communication, their required behavior

SCI F

SCI E

SCI D
SCI C

Box 1

SCI B

SCI C

Box 2

Box 3

Network

Ethernet

46

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Software requirements analysis

 Input – “required capabilities” / allocated requirements

 Actions

– Define typical scenarios of use (text, Use cases)

– Define initial set of requirements (text, state machines,…)

– Develop prototypes (pictures, GUI code,…)

– Interact with users, analyze, and refine

 Output – “requirements”

– Examples of forms used include text, use cases, scenarios,

state models, sequence diagrams, GUI prototypes, usage

models

 Note – requirements are descriptions of externally-

visible behavior

SW SCIinputs outputs

SW requirements

define the mapping

from inputs to outputs

47

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Software architectural design

 Input – “requirements”

 Actions

– Identify major components that form the top-level structure

– Define the functional behavior of each component

(responsibilities)

– Define the interfaces for the components

– Develop prototypes

– Analyze and refine

 Output – “architectural design”

– List of components, their interfaces,

and their interactions

– Text, class diagrams, sequence diagrams, data flow diagrams,

“4+1 views”, …

inputs outputs

48

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Software detailed design

 Input – “architectural design”

 Actions

– Identify internal structure of the major components

 i.e., down to smallest module level (units)

– Define the behavior of each subcomponent and unit (using

program design languages (PDLs), state machines, …)

– Define the interfaces for the subcomponents and units (text)

– Develop prototypes (figures / code)

– Analyze and refine

 Output – “detailed design”

– List of all code units and their

interfaces and interactions

– Text, class diagrams, sequence diagrams, data flow diagrams,

activity diagrams, …

inputs outputs

49

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Code and unit test

 Input – “detailed design”

 Actions

– Write code to implement the assigned behavior and interfaces

for each unit

– Verify that the code is correct (unit test)

– Analyze and refine via prototypes and models

 Output – “fully coded units”

– C++, Ada2005, Java,

Kennedy-Carter ASL… inputs outputs

void __fastcall TSwatForm::FormMouseDown(TObject *Sender, TMouseButton Button,

TShiftState Shift, int X, int Y)

{

Screen->Cursor = TCursor(crMaletDown);

if (IsGameOver || IsPause)

return;

bool hit = false;

for (int i = 0; i < 5; i++)

{

if (!HoleInfo[i].Dead && HoleInfo[i].Time != 0)

{

if (X > Holes[i].x && X < (Holes[i].x + Live->Width) &&

Y > Holes[i].y && Y < (Holes[i].y + Live->Height))

{

Score += HitPoints;

HoleInfo[i].Dead = true;

}

}

}

WriteScore();

}

50

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Integration and test

 Input – “fully-coded units”

 Actions

– Successively integrated units to form components and

eventually the entire CSCI

– Verify that the integrated code is correct at each stage

– Analyze and refine

 Output – “complete integrated CSCI” that correctly

implements the assigned requirements

CSCI

51

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Example 1 – minimal use of tools

Code ExecutableDesign

create

reqs

Text editor/

Powerpoint

text / diagrams C++

analyze

capabilities

analyze and

refine

Compiler

Compile and

test

Reqs

Text editor/

Powerpoint

create

design

analyze

reqs

analyze

and

refine

Text

editor

text / diagrams

write

code

Perhaps using

reqs tool such

as DOORS

52

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Example 2 – use of UML

Rose

Code Gen

Code

Skeleton

Fully coded

system

UML

structural

model

analyze

structure

Rational Rose

UML
C++

create

structural

model

modify

model

as

needed

IDE

Tools

Other system

code modules

Add

functional

code

Integrate

with other

code

Generate

code

skeleton

53

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Code

module

for algorithm

Code

module

for algorithm

Example 3 – use of MATLAB

MATLAB

Compiler

Code

module

for algorithm

Fully coded

system

MATLAB

algorithm

model

analyze

behavior

via execution

MATLAB

tool

MatLab is a registered trademark of The MathWorks, Inc.© 1994-2006 by The MathWorks

MATLAB M-code C++

create

model in

MATLAB

code

modify

model

as

needed

IDE

Tools

Other system

code modules

Integrate

with other

C++ code

Generate

code

skeleton

Execute,

measure,

and tune

as necessary

54

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Agenda

 Overview of tutorial

 Models

 Model Driven Engineering (MDE)

 Overview of software development activities

 Software development artifacts

 Model Driven Architecture® (MDA®)

 Assessment

 Recommendations

55

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Typical development products

Software

Architectural

Design

Software

Detailed

Design

Software

Coding and

Testing

Software

Requirements

Analysis

Software

Integration

Desired

capabilities

Text description of reqs

Use cases

Scenarios

State diagrams

Context diagrams

Class diagrams

Sequence diagrams

Models/prototypes

State diagrams

Class diagrams

Sequence diagrams

Data flow diagrams

Message definitions

Models/prototypes

….

State diagrams

Class diagrams

Sequence diagrams

Data flow diagrams

Activity diagrams

Algorithms

Data definitions

Pseudo-code

….

Code (text)

Test cases

Test results

Code (text)

Test cases

Test results

Define software

requirements at CSCI

level – describe

behavior, identify

objects, classes, and

external data

(interfaces)

Define CSCI

architecture -

identify major

classes, methods

/ functions,

internal interfaces,

and messages at

component

and module level

Define CSCI detailed

design (unit level) –

expand and refine

classes/modules to

include local data, the

methods/functions

and their interfaces

Write unit level

code to

implement

class structure,

methods, and

functions

Test unit code

Purpose

Typical

major

products

Integrate units to

form components,

and verify.

Integrate components

to form CSCI and

verify that CSCI meets

its requirements.

56

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Different roles for code

 Defining architectural design
– Specifications of components and their interrelationships

– Can be written in parallel with architectural design

 Defining detailed design
– Specifications of bottom-level components and their

interrelationships

 Defining the semantics
– Detailed semantics – procedures, operations, calculations,

decisions, specific algorithms,…

 Supporting external interfaces and interactions
– e.g., user interfaces

– Can be written in parallel with requirements analysis

 Interacting with host environment (resources)
– OS calls

– Middleware exploitation

57

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Relationship of activities and code

Procedure Main (inputs, outputs)Systeminputs outputs

inputs outputs

Procedure A (inputs, outputs)

Procedure B (inputs, outputs)

Procedure C (inputs, outputs)

Procedure D (inputs, outputs)

Procedure E (inputs, outputs)

inputs outputs

Procedure A (inputs, outputs)

Procedure aa (inputs, outputs)

Procedure ab (inputs, outputs)

Procedure ac (inputs, outputs)

Procedure ad (inputs, outputs)

Procedure ae (inputs, outputs)

inputs outputs

void __fastcall TSwatForm::FormMouseDown(TObject *Sender, TMouseButton Button,

TShiftState Shift, int X, int Y)

{

Screen->Cursor = TCursor(crMaletDown);

if (IsGameOver || IsPause)

return;

bool hit = false;

for (int i = 0; i < 5; i++)

{

if (!HoleInfo[i].Dead && HoleInfo[i].Time != 0)

{

if (X > Holes[i].x && X < (Holes[i].x + Live->Width) &&

Y > Holes[i].y && Y < (Holes[i].y + Live->Height))

{

Score += HitPoints;

HoleInfo[i].Dead = true;

}

}

}

WriteScore();

}

Procedure ab (inputs, outputs)
void __fastcall TSwatForm::FormMouseDown(TObject *Sender, TMouseButton Button,

TShiftState Shift, int X, int Y)

{

Screen->Cursor = TCursor(crMaletDown);

if (IsGameOver || IsPause)

return;

bool hit = false;

for (int i = 0; i < 5; i++)

{

if (!HoleInfo[i].Dead && HoleInfo[i].Time != 0)

{

if (X > Holes[i].x && X < (Holes[i].x + Live->Width) &&

Y > Holes[i].y && Y < (Holes[i].y + Live->Height))

{

Score += HitPoints;

HoleInfo[i].Dead = true;

}

}

}

WriteScore();

}

Requirements

level

Architectural

design level

Detailed

design

level

Coding

level

A

B

C

E

A

B

C

D

D

E

58

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Code levels and roles

Procedure Main (inputs, outputs)Systeminputs outputs

inputs outputs

Procedure A (inputs, outputs)

Procedure B (inputs, outputs)

Procedure C (inputs, outputs)

Procedure D (inputs, outputs)

Procedure E (inputs, outputs)

inputs outputs

Procedure A (inputs, outputs)

Procedure aa (inputs, outputs)

Procedure ab (inputs, outputs)

Procedure ac (inputs, outputs)

Procedure ad (inputs, outputs)

Procedure ae (inputs, outputs)

inputs outputs

void __fastcall TSwatForm::FormMouseDown(TObject *Sender, TMouseButton Button,

TShiftState Shift, int X, int Y)

{

Screen->Cursor = TCursor(crMaletDown);

if (IsGameOver || IsPause)

return;

bool hit = false;

for (int i = 0; i < 5; i++)

{

if (!HoleInfo[i].Dead && HoleInfo[i].Time != 0)

{

if (X > Holes[i].x && X < (Holes[i].x + Live->Width) &&

Y > Holes[i].y && Y < (Holes[i].y + Live->Height))

{

Score += HitPoints;

HoleInfo[i].Dead = true;

}

}

}

WriteScore();

}

Procedure ab (inputs, outputs)
void __fastcall TSwatForm::FormMouseDown(TObject *Sender, TMouseButton Button,

TShiftState Shift, int X, int Y)

{

Screen->Cursor = TCursor(crMaletDown);

if (IsGameOver || IsPause)

return;

bool hit = false;

for (int i = 0; i < 5; i++)

{

if (!HoleInfo[i].Dead && HoleInfo[i].Time != 0)

{

if (X > Holes[i].x && X < (Holes[i].x + Live->Width) &&

Y > Holes[i].y && Y < (Holes[i].y + Live->Height))

{

Score += HitPoints;

HoleInfo[i].Dead = true;

}

}

}

WriteScore();

}

Requirements

level

Architectural

design level

Detailed

design

level

Coding

level

A

B

C

E

A

B

C

D

D

E

Behavioral

Architecture/

design

Semantics

59

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Code structure

Procedure Main (inputs, outputs)

Procedure A (x,y)

Call Aa (x,y)

Call Ab (x,y)

Call Ac (x,y)

end;

Procedure B (x,y)

Call Ba (x,y)

Call Bb (x,y)

Call Bc (x,y)

end;

Procedure C (x,y)

Call Ca (x,y)

Call Cb (x,y)

Call Cc (x,y)

end;

Begin

Call Aa (x,y)

Call Ab (x,y)

Call Ac (x,y)

end

End;

Procedure Aa (inputs, outputs)

x = 5

y = 10

call CORBA

end;

Procedure Ab (x,y)

x = 5

y = 10

call LINUX

end;

….

….

Requirements level

Arch design level

Detailed design level

Coding level

Interacting with

host environment

60

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Implications

 In any source code listing, possible to determine the

levels (roles) that each SLOC supports (serves)

 Code can be written across entire development cycle

– Reqs analysis → arch dsn → detailed dsn → code

 Separating code roles facilitates the use of tools

– e.g., specifying architecture using code allows use of tools to

determine consistency of interfaces across system

 Dependencies to underlying computational platform

can be isolated

– Facilitating portability

 This observation is key to the use of models and other

automatic techniques

61

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Composition of source code

Platform

Framework

Semantics

Integration

Roles of

source code

Forms the architecture – modules,

interfaces, overall structure

Binds to the underlying execution platform –

e.g., operating system, middleware

Defines the operations and algorithms to be

performed

Binds the software to external elements

62

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Agenda

 Overview of tutorial

 Models

 Model Driven Engineering (MDE)

 Overview of software development activities

 Software development artifacts

 Model Driven Architecture® (MDA®)

 Assessment

 Recommendations

63

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Model Driven Architecture

 Trademarked term referring to the modeling approach

defined by The Object Management Group (OMG)

– A non-profit group that establishes standards by consensus

– With significant participation by individual vendors

 Both the term and its abbreviation MDA are registered

trademarks of OMG

– As are Model Driven Development , MDD , Model Based

Programming , Model Based Development , Model Driven

Systems , Model Based Management , Model Driven

Application Development , + others…

 When these terms are used, they must refer to the

technique defined by the OMG

– Cannot use MDA to refer to another approach using different

standards

64

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

The world of MDA®

 OMG® created a specific logo to refer to MDA®

 It includes the relevant standards that form the

approach and the domains where it can be applied

 The “architecture” in the name

refers to the architecture of tools

that are defined by the OMG

– Not to the architecture of the system

to be developed

 These tools include:

– MOF – Meta-object Facility *

– UML – Unified Modeling Language

– XMI – XML metadata exchange

– CWM – Common Warehouse

Metamodel * Required for MDA modeling languages

65

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Core concept of MDA

 According to OMG

“…the MDA separates business and application logic from

underlying platform technology. Platform-independent models

of an application or integrated system's business functionality

and behavior, built using UML and the other associated OMG

modeling standards, can be realized through the MDA on

virtually any platform, open or proprietary, including Web

Services, .NET, CORBA , J2EE, and others. These platform-

independent models document the business functionality and

behavior of an application separate from the technology-

specific code that implements it, insulating the core of the

application from technology and its relentless churn cycle….”

 That is, MDA supports portability

66

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

The MDA approach

 Capture system requirements in a Computationally

Independent Model (CIM)

 Model system design in a Platform Independent Model

(PIM) using UML

– Details about execution platform not included (e.g., operating

system, middleware,…)

 Augment PIM with system behavior details using

Action Semantics

 Execute the system model to observe behavior

– Refine model based on observations

 Transform model into Platform Specific Model

– Details about execution platform added at this time

 Transform PSM into executable code (e.g., C++)

67

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Details of defining semantics

 Semantics typically defined in UML in two locations

– Class methods

– State entrance, exit, transition,…

Class Stack

Size: integer

Elements: Integer Array(1:Size)

Num_Entries: Integer

Push (In value)

Pop (Out value)

Get_Size (Out size)

Can supply action semantics code to

perform these operations,

thereby defining their semantics

UML Class

off

compute

square

mode

compute

power of 3

mode

on / “0”

x / x2

“change” / “0”

“change” / “0”

x / x3

off / “0”

off / “0”

Can supply action semantics code to

compute these state transition actions

thereby defining their semantics

68

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Sample action semantics

Kennedy-Carter. Supporting Model Driven Architecture with eXecutable UML

© Copyright 2002 Kennedy Carter Limited (CTN 80v2.2)

69

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

What it does for you

 Allow observation of behavior directly from the “model”

 Support targeting the system to multiple run-time

environments

UML

model

Semantics

using

action

semantics

Complete

model of

system

Simulation tool

Model compiler

simulated

behavior

System code

for CORBA,

VxWorks,

PowerPC

System code

for NDDS,

LynxOS,

Pentium

System code

for 1553,

SDEX/44,

AN/UYK-44

Previously,

these steps

were labor

intensive and

error prone

70

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Example of MDA process

Model

Compiler

PSM

Fully coded

component

Create

structural

model in

UML

(design)

IDE

Tools

Other system

code modules

Integrate

with other

C++ code

Transform

PIM to

PSM
Execute,

measure,

and tune

as necessary

UML ASL Tags

PIM

Create

semantic

model in

ASL

(coding)

Insert tags to

guide code

generation

for desired

platforms

CIM

Define

requirements

in CIM

(reqs

analysis)

Required

capabilities

from

stakeholders

Model

Execution

Tool

Executable

Code

e.g., C

Transform

PSM to

target

systemAnalyze

behavior

via

execution

MDA tool

71

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

What the pieces do

 UML allows the definition of the code that defines the

architecture and detailed design of the system

– Components and their interfaces

– Using Class diagrams, state diagrams,

sequence diagrams, …

 Action Semantics allows the

definition of the semantics that

defines the behavior

 The Action Semantics tags allow

the definition of the alternate

features of the various execution

platforms that the component will

operate on

Application

code

Computing platform

interface code

Computing platform

Architecture

code

72

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Summary view

 MDA relies on UML to define the overall structure of

the system (classes, methods, components)

– Uses UML to generate structural code

 MDA relies on Action Semantics to define the

semantics

– Action Semantics = coding

– The Action Semantics language could be C++, Kennedy-

Carter’s ASL, Pathfinder’s PAL, or something else

– It is inserted into the overall system structure appropriately

 MDA relies on conditional compilation to achieve

portability

– Similar to a source code preprocessor

MDA is a special case of MDE

73

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Agenda

 Overview of tutorial

 Models

 Model Driven Engineering (MDE)

 Overview of software development activities

 Software development artifacts

 Model Driven Architecture® (MDA®)

 Assessment

 Recommendations

74

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Overall assessment of MDA®/MDE

 Some users have experienced significant benefits from

using MDA

 MDA facilitates early prototyping and evaluation by

supporting executable model generation

 However, MDA is not a silver bullet

– It is not currently applicable for all situations

– It does not replace modeling and simulation

 MDE, being the more general approach, is likely to be

more responsive to emerging techniques and tools, e.g.,

– Domain-specific languages

– Powerful transformation engines

 MDE (including MDA) is a rapidly emerging technology

75

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Assessment – economics of MDE

 Advantages of using MDE vary depending on

– where applied in development life cycle

– level of applicability to phase activities

 Advantages likely to increase as technologies mature

 Currently, benefit realized primarily in coding,

integration, and maintenance

– Tools automate some of detailed coding and integration work

– Requirements analysis and design still required

 Users reporting benefits in reuse of models

– Applied to similar systems

76

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Effect on requirements

 Models generally do not address requirements,

although they help to elicit requirements from users

– This effect is realized primarily in reduction of requirements

defects, hence rework late in the development cycle

– Does not reduce requirements analysis effort

 Still necessary to elicit, analyze, and refine requirements

– Can help in capturing and documenting behaviors

 Especially when using state diagrams

– If executable, can use models to gain feedback from users if

tools support such techniques

 E.g., create sample dynamic user screens, allow users to

interact, refine based on observations and experiences

77

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Effort across development

Define capabilities/

allocated requirements
Describe

Model

Prototype

Refine

Elicit

Demonstrate

Maintain

Upgrade

Rehost

Users /

stakeholders

Integration

Code &

Test

Detailed

Design

Arch

Design

Req

Analysis

15%

25% 25%

15%

20%

Typical effort allocated to activities –

actual experience varies by project

FQT
System

Integration

Source of effort allocations – Boehm, COCOMO, Reifer

Activities which will

experience the most

benefit

78

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Benefits of process discipline

 Applying techniques such as MDE forces a level

discipline on developers

– In all activities from requirements analysis through coding

 As a result of this increased discipline

– Defect content is likely to drop

– Productivity is likely to increase

 MDE is not alone in realizing this benefit

 Other disciplined approaches have the same

advantage

– as long as the discipline is applied

79

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Productivity

 Large increases in productivity can be realized

 Key factors

– Increased adherence to disciplined process (not unique to MDE)

– Use of a higher-level Action Semantics Language

 By raising level of code, more can be accomplished with

fewer SLOC (more powerful expressiveness)

 Experience shows that SLOC rate for writing ASL is about the

same as for C++

 But ASL → C++ expansion factor is important (can be as much

as 3 to 1)

 More efficient use of “mental energy”

– Creation of reusable models

– Creation of domain-specific model components

 Similar to creating code libraries or class libraries

80

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Assessment – design independence

 The models developed are not necessarily design

independent

– Unless they are at the requirements level

 Possible with some tools/notations (e.g., state charts)

– Otherwise they contain design and code

 (ASL is after all a programming language)

– Developers still need to create a design and write code

 But some of it is handled by the default structure created

by the tools

 Not necessarily a problem

 But, the models can be independent of the computing

infrastructure

– incl. middleware, target operating system, processor

– Crucial to enhance portability

81

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Assessment – maturity of tools

 Many available MDA /MDE tools are becoming mature

– Tools are maturing as more experience is gained

– But not all – some tend to be immature

– Relative to features, interoperability, robustness

 Limited interoperability across different vendor tools

– Cannot easily move models, and so get locked into a vendor

– True for UML-level models as well as Action Semantics code

 For safety-critical applications, essential to be able to

verify correctness of the tools and model compilers

 Using model compiler is not a trivial task

– Need to tailor and add tags to models – lots of details to worry

about (e.g., multi-threading, priorities, …)

– But such tailoring can be performed by a small percentage of

project staff

82

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Assessment – action semantics

 Action Semantics is a programming language

– As implemented by some tool vendors, at a somewhat higher

level of abstraction than C++

 Tend to be proprietary to the vendor

– Some tools use C++ directly

 Not implementation-independent

– But can be host-platform independent

 To be used, need to be rich enough to cover crucial

constructs needed by modern applications (e.g.,

exception handling)

– Not the case for most such languages today

 Current UML 2.0 definitions too abstract

– Other MDE tools depend on other notations with stronger

semantics

83

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Language considerations

 Level of standardization – if language is not standard,

risk of getting locked into a specific vendor and model

– E.g., UML’s Action Semantics defined at meta-language level,

not language syntax level – leaves room for multiple

interpretations

– Implementations not standard

– Will inhibit moving between tools and reuse

 Precision of definition – ambiguous or imprecise

language definitions can lead to ineffective models and

non-standard implementations

– Implementations based on ambiguous guidance

84

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Other assessment details

 MDA does not remove the need to design

– Developing a PIM involves designing and coding

– Some non-MDA techniques can avoid much design however

 Possible to go from state charts or data flow diagrams

directly to code

 MDA will not support effort-free rehosting

– Some effort required

 to define the tags and

 to fit the results to the operational environment

 MDA does not currently provide any direct help for

requirements analysis

– Potentially the most critical activity in system development

– But some MDE techniques can help in this area

85

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Agenda

 Overview of tutorial

 Models

 Model Driven Engineering (MDE)

 Overview of software development activities

 Software development artifacts

 Model Driven Architecture® (MDA®)

 Assessment

 Recommendations

86

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

General strategy

 Weigh suitability of applying MDE approach to work to

be performed

– Requirements focus vs design/build

– Degree of reuse / use of legacy content

– Level of criticality of system

 Survey and assess tools and modeling languages to be

applied

 Ensure adequate training for staff

87

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

Evaluating MDE approaches

Tool attributes Tool

score

Language

attributes

Language

score

Level of
standardization

Level of standardization

Completeness
Precision of definition

Suitability Popularity

Confidence Completeness

Ease of use Suitability

Stability Level

Predictability TOTAL

88

Technical Basis of Model Driven Engineering – WGBail - NDIA Systems Engineering Conference 2011

MITRE

The end

 Any questions?....

Contact information

Dr. William Bail

The MITRE Corporation

wbail@MITRE.org

571.205.7002

