

49th Annual NDIA Conference Targets, UAVs & Range Operations Symposium & Exhibition

Boeing QF-16 Program – Ready for Test

QF-16 Full Scale Aerial Target
Boeing Global Services and Support
Maintenance, Modifications, & Upgrades
Aircraft Sustainment & Maintenance

Dr. Kevin A. Wise Senior Technical Fellow QF-16 Chief Architect October 26, 2011

Boeing Targets / Decoys / UAS

- Cost Effectively Converting Highly Reliable, NDI Air Vehicles
- Providing Foundation for New Development Programs
- Boeing's Systems
 Integration Expertise and Teaming
- Application of Boeing Critical Technologies
- Synergy Among Our Targets, Unmanned Systems, and Weapons Programs

QF-16 Overview

Key Features

- Follow on for QF-4 Program: Supersonic, High-G, Heavy Payload Capability
- Satisfies Title 10 "Live Fire/Lethality"
- Provides 4th Generation Threat Representation

QF-16 FSAT Roadmap Meets All Government Milestones

Mission Requirements

QF-16 Design meets Mission Requirements

- 4th Gen Threat
- F-16 Maneuverability
- Minimized impact to RCS
- Countermeasures
- 120nm GRDCS datalink
- Weapon accuracy scoring
- Range Safety Flt Termination
- Piloted & Unmanned
- Reliable
- Supportable Test Equipment
- Growth Phase II Air Superiority Target (AST)

The QF-16 is designed for Mission Success

Overview of DPE Installations

Drone Conversions Underway at Cecil

- Cecil Field Recovery of first F-16
 - On time readiness
 - Trained and experienced support personnel

Lean cellular production supports affordable, high quality, on time performance

Exceeding Expectations

Product Improvements

- CTS:
 - Improved TVI clock/position
 - Improved data latency
 - Improved frequency stability
 - Antenna switch feedback
 - Surge suppression
- Payloads:
 - Increased payloads power
 - All 8 wing stations active
 - Pre-wired spare payload discretes
 - Modular payload design for easy programmability
- Vector Scoring:
 - Improved scoring coverage
 - Shock isolated TRIM units for improved scoring accuracy
- Low profile antennas for RCS
- URAP available for improved navigation accuracy & GPS/TCS growth path
- More than double reliability
- Spare I/O available for growth
- Improved BIT and fault isolation/detection
- RCC-319 compliant Flight Termination System

The current QF-16 design improves on a successful QF-4 design

QF-16 Peculiar Support Equipment (PSE)

Ground Servicing Screen with B1 stand for safe cockpit exit after engine start

PSE Communicates with QF-16 through dedicated maintenance connectors and RF

Portable Flight Line Tester for OFP load, system initialization, and diagnostics

Trailer-mounted Automated System Test Set for Acceptance and Pre-Mission Testing

Airborne System Architecture (Software View)

Systems With Major Airborne Software Components Highlighted in Blue

System Verification Flow

All QF-16 Sim Models and Products Autocoded Bulling From Central Simulation

GRDCS Operations

GRDCS Manual Mode

- Controller inputs manual command (e.g. stick, throttle)
- Controller flies autopilot modes (e.g. altitude hold, speed hold)
- Controller initiates maneuvering

GRDCS Auto Mode

GRDCS computes required commands (e.g. stick, throttle)

- GRDCS is controlling aircraft flight path
- Controller still initiates maneuvering (breaks Auto mode)
- Onboard software behaves the same whether in auto or manual mode

Onboard Auto Sequences

- All Attitude Recovery (AAR)
- Automatic Takeoff (ATO)
- Takeoff Abort (TOA)
- Escapes
- Autonomous (e.g. Loss of Comm)

Verifying Integration of GRDCS and DPE Software is an Important Development & Risk Reduction Activity

SIL Lab Layout Diagram – Pilot Station & BOEING

- Cockpit View
- Observer View
- CsGTI PC
- COTS Stick
- COTS Throttle
- COTS Pedals

QF-16 Levels of Vehicle Control and General Control Law (CLAW) Architecture

FQT Test Definition Process

Traceability

Test

Test
Matrix
DB

FQT
Test

Definitions

Verification Testing

All Aspects Are Under Configuration Controlled

Requirements Verified In:

- Verification Tests
- System Level Tests

Component and System Level Tests

Growth Potential

GPS Navigation -

- Accurate aircraft state estimation during all flight phases
- Accurate heading and gyro bias estimation reduces risk
- Mature navigator used on X-45, Phantom Eye, JDAM, SDB, others

Leverages Boeing's experience and proven autonomous system software

- Guidance, Navigation, and Control Software
 - Autocode development process improves quality, reduces costs and schedule

- Reduced manpower costs in support of QF-16 FSAT CONOPS
- Improved mission assurance and first time quality
- Improved safety, accuracy, and repeatability
- GRDCS controlled autonomous system operation

QF-16 Operation at Alternate Test Ranges

Program Summary

- The Boeing QF-16 Program leverages QF-4 supply base and maximizes the use of existing hardware and software capabilities to provide a low risk drone peculiar equipment solution.
- QF-16 Equipment in qualification testing. Software progressing towards Formal Qualification Testing. Aircraft Integration and Checkout beginning at Cecil Field. First Flight planned for Feb 2012

Non-OEM Experience

System Integration Experience

Unmanned Experience

