

An Emerging Methodology for Mapping Between a System's Components and Capabilities: The System Capabilities Analytic Process (SCAP)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

William Landis Richard Moyers Kevin Agan

Army Research Laboratory
Survivability/Lethality Analysis Directorate
Aberdeen Proving Ground, MD

Outline

- Issues
- Objective and results
- Overview of SCAP
- Sources of dysfunction
- The Functional Skeleton
- What about personnel?
- Meaningful results
- Application of the Functional Skeleton
- Examples
- Next steps and conclusion

What are the issues?

- "Do I still have the capability to complete the mission following a damaging event?"
 - Key to Army's Mission-Based Test and Evaluation (MBT&E)
 - Cannot be answered easily using traditional methods or metrics
 - Not necessarily a single answer
- The issue with using the traditional methods or metrics in MBT&E:
 - Traditional analysis results are qualitative values called loss of function (LoF).
 - MBT&E requires a quantitative understanding of a system's remaining capability to define an effect on a mission.
 - The correlation to a specific mission context is not possible.

Objective and results

Objective:

Create a methodology that will quantitatively map between a system's capabilities and a system's components.

Results:

- We have developed the System Capabilities Analytic Process (SCAP).
- SCAP produces a map between the system's capabilities and the system's components. These maps are known as the Functional Skeleton (FS).
- The FS provides the information required to determine the remaining capabilities, and therefore the course of action, following a damaging event.

RDECOIN A preview of SCAP

- Components that are grouped into sub-systems perform functions that provide the capabilities to complete the mission task.
- SCAP is very similar to processes used in the consumer-product industry.
- The process reports metrics expressed in the language of the military user.
- The focus of SCAP is a system's remaining capability.

Sources of dysfunction

Dysfunction is defined as a component that is not functioning as it is intended.

The Functional Skeleton: A map between component and capability

How are personnel assessed?

First, begin with the "battlefield insult."
 This is the actual mechanism that causes the injury / wounding.

- The injury is characterized both:
 - in a method to understand the medical severity, and
 - as a detailed mapping to the ability to perform certain functions post-wounding.

What toolset assesses the crew?

Operational Requirement-based Capability Assessment (ORCA)

Begin with the battlefield insult.

Medical Casualty

System Capabilities

System Functions

Sub-Systems

A high-resolution 'shotline' is drawn through the affected tissues to determine risk to life. This is communicated in terms of the Abbreviated Injury Scale[®] (AIS).*

None	Minor	Moderate	Serious	Severe	Critical	Maximal
0	1	2	3	4	5	6

The threshold of '3' (serious) or greater is scored as a medical casualty.

Medical Casualty

Warfighter has experienced an injury requiring evacuation from unit so that medical treatment can be administered.

* Abbreviated Injury Scale ©, 2005, Updated 2008, AAAM, Des Plaines, IL, 2008.
Approved for Public Release – Distribution Unlimited

Linking injuries to functionality

Operational Requirement-based Capability Assessment (ORCA)

Operational Casualty

A paradigm shift: action-reaction-new assessment

In the preceding example, the gunner was the only one injured. After some time, the Commander & Gunner trade places*.

Initial Incident (time=0)

Driver:

- AIS: 0
- Incapacitation: 0

Commander:

- AIS: 0
- Incapacitation: 0

Gunner:

- AIS: 2
- Incapacitation :0.75

After Crew Drill(s)

Driver:

- AIS: 0
- Incapacitation: 0

Commander:

- AIS: 2
- Incapacitation: 0.1

• Gunner:

- AIS: 0
- Incapacitation: 0.1

^{*}assumptions include no deleterious effects & some loss of performance for weapon familiarity / zeroing.

Approved for Public Release – Distribution Unlimited Transition to meaningful results

Traditional: mobility kill

One possible SCAP metric: travel on roads

- can go max speed
- can go up to 30 mph
- can go up to 10 mph
- no-go

Truck functional skeleton

Because the truck was damaged, it's capability to travel on roads is reduced.

Two trucks are operating in a convoy mission. By the commander's intent, the speed of the convoy is limited to the speed of the slowest vehicle.

Vehicle not damaged

Vehicle damaged

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Vehicle not damaged

Vehicle damaged

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Vehicle not damaged

Vehicle damaged

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Further explore and integrate crew metrics and time-dependent degradation
- Conduct SCAP-based analyses for the MBT&E pilots (JLTV, PIM, JAGM)

- Apply the Functional Skeleton in the System-of-Systems Survivability Simulation (S4)
- Explore the utility of the Functional Skeleton across the Army enterprise

Summary and conclusions

- ARL/SLAD has developed SCAP to quantitatively map between a system's capabilities and a system's components.
- ARL/SLAD can use SCAP to generate quantitative data that defines a system's remaining capability after a component is no longer functioning.
- Based on AEC feedback, the metrics developed from SCAP meet the requirements of MBT&E.
- SCAP has potential application across the Army enterprise.

Existing Impact

- Briefed at:
 - 2010 March NDIA T&E Conference
 - 2010 October AORS
 - 2010 August JLTV LF IPT
- Program acceptance:
 - Accepted by AEC as the engineering-level methodology for MBT&E
 - Written in the JLTV and PIM Live-Fire Strategy
 - Development of Human Availability Technique (HAT)*
- Publications:
 - Jan 2010 MBT&E workshop first review of SCAP (ARL-SR-0218)
 - March 2010 NDIA T&E Conference presentation of SCAP (ARL-SR-0217)
 - Applying SCAP to the MBT&E of the JLTV (ARL-SR-206)
 - An Emerging Methodology: SCAP (ARL-TR-5415)

Contact Information

William Landis Mechanical Engineer

ARL/SLAD

(410)278-2675

william.landis1@us.army.mil

Richard Moyers

Systems Engineer

ARL/SLAD

(410)278-4761

richard.moyers@us.army.mil

Kevin Agan

Mechanical Engineer

ARL/SLAD

(410)278-4458

kevin.agan@us.army.mil