NDIA - Test and Evaluation Conference

Model Based Systems Engineering (MBSE) and Modeling and Simulation (M&S) adding value to Test and Evaluation (T&E)

March 16, 2011

Larry Grello
High Performance Technologies, inc.
3159 Schrader Road
Dover NJ, 07801
(973) 442-6436 ext 275, Igrello@hpti.com

Outline

- What was our Assignment
- The Approach to the Assignment
- Model Based Systems Engineering (MBSE)
- Systems Modeling (SysML)
- Pillars of SysML
- Capturing Requirements, Behavior, and Structure for our assignment
- Capturing Test Information
- Other Modeling Activities
- Planning Activities
- Lessons Learned

The Facility and the Assignment

- Hardware in the Loop (HIL) Facility
 - Focus on testing of GPS-guided precision munitions
 - Desiring a cost effective means for mitigating risks
 - Capable of performing component and integrated component tests prior to gun launch testing
- Our Assignment
 - Capture Stakeholder Requirements
 - Capture System Requirements
 - Capture Test and Evaluation information that the HIL Facility offers
 - Traceability of Test and Evaluation information to the Requirements

How to capture the information for our assignment?

- Asked ourselves how to best accomplish our assignment
- Desire to capture Requirements, System Behaviors, and Test information in one location with traceability
- Desire to involve all stakeholders in the process and develop a common understanding early in the lifecycle
- Need to manage project risk
- Looked to a Model Based Systems Engineering Approach to help achieve this
- Focus on early developmental activities
 - Scoping the system of interest

Systems Engineering Approach

MBSE - General Definition

HPT:

- It is about System Modeling
 - System Model is a <u>cohesive</u>, <u>unambiguous</u> <u>representation</u> of what the System <u>is</u> and <u>does</u>.
- It provides a description of
 - Requirements and
 - Technical Solution and
 - Operational Scenarios
 - System Behavior (including I/O)
 - Physical Architecture (Structure, interfaces)
 - Dynamic Simulation (requires "executable" models)
 - Verification Procedures
- MBSE is used to produce SE products
- It requires a Modeling Language that is computer interpretable

Document centric

Minimum Required to Define System

SysML Overview

Descriptive Modeling

- General Purpose Visual Modeling
 - > Structure
 - Behavior
 - > Requirements
 - Parametric
- Supports: specification, analysis, design, verification and validation

4 Pillars of SysML

HPT

4. Parametrics

Capture Capabilities of the HIL

- Eliciting Threshold and Objective Capabilities
 - Actors
 - Use Cases (Goals)
- Used to review with team
- Helped to come up with stakeholder requirements and informally trace behavior to requirements
- Looked at HIL facility as a project

Capture Structure of the HIL

HIPT:

- Eliciting Structure of the HIL
 - What is part of the system
 - What is outside of system that interacts with our system
- Logical Abstraction of "things" that may end up being:
 - Physical Equipment
 - Software
 - Information (e.g. documented procedures/enabling products)

Capture Behavior of the HIL

- Eliciting Behaviors of the HIL
 - Could use Activity, Sequence, and/or State Diagrams
 - Can look at from a domain perspective (which we did here)
 - Here we elicit the actions for testing a weapon (which may or may not be tied to a specific capability)

Scope Behavior of the HIL

Scope Behaviors of the HIL

- Used the activity diagrams to review actions of a test
- Next, it helped us decide what is part of the system and what is outside the system (i.e. allocation of behavior to structure in this case)

Capture Requirements of the HIL

HIPT:

Capture Requirements of the HIL

- This was going on in parallel with capturing the capabilities, structure, and behavior
- Can be done within a modeling tool, requirements management tool, or both
- Relationships between the requirements and other model elements can be captured

System Requirements in a requirements management tool >>>

Capture Requirements of the HIL

- Capture Requirements of the HIL
 - A trace view may be more appropriate and manageable for large projects than a diagram
 - A trace view can be exported to a deliverable or format that can be used elsewhere (e.g. imported into a spreadsheet or requirements management tool).
 - Some tools provide tables that would allow you to managed requirements within the MBSE tool (if desired).

Capture Verification Information

- Capture Verification Information for the HIL
 - Assignment was also to capture how the system requirements were going to be verified.
 - MBSE can capture that information (e.g. relating verification to requirements).
 - This can be captured and displayed in requirements diagrams, trace views, and behavior diagrams).

Capturing Parametrics

- Capturing equation data for your system of interest
- Interface with solvers to solve your equations
- Can create instances to look at different possible solutions (e.g. trade comparisons)
- Some examples of possible use: timeline analysis, failure analysis, reliability analysis, budgeting (e.g. weight, cost), aeroballistics model, optimize test set, model risk

Capturing Parametrics

- Simple example here is for a weight budget.
- The data for the equation is gathered in the block definition diagram.
- The "wiring" together of weight equation is done within a parametric diagram.
- The data can now be analyzed (which may mean interaction with a plug-in to the MBSE tool that serves a equation solver).

Capturing Parametrics

- For our HIL task assignment, we did some capturing of parametric data (informal).
- Interfaced with System
 Analysis team to explain
 the HIL testing related to
 the simulated projectile
 flight information.
- The diagrams to the right is a high level abstraction of that information (representative example).

Model Animation and Execution

HPT

- MBSE tools can be used to animate/execute behavior of your system of interest
 - Executing an Activity Diagram
 - Executing a State Machine Diagram
 - Executing a Sequence Diagram
- Model animation can help with gap analysis
- Model animation identify interfaces within your system and domain
- Model animation can be used to prototype your system (or prototype different solutions/alternatives)
- An executable model provides the potential to auto-generate useful model artifacts

Planning Considerations

- Scoping the effort (and where modeling fits in for specific project)
- Need a MBSE process to follow (an approach)
- Common Modeling Language (e.g. SysML, UML)
- A Modeling Tool to capture the information
- Who is going to model the information (and be able to convey the information to the reviewers who aren't expected to be system modelers themselves)
- Who is going to review the information (impacts the scoping of the effort as well)

Conclusions/Lessons Learned

- Developed a common understanding of our system and what we needed to verify
- Assisted in defining and confirming: capabilities, requirements, structure, interfaces, and test information
- Formally documented the system and related verification information
- Didn't cause extra work (was part of the work; modeling assisted in delivering on schedule and quality work)
- Provided confidence to leadership that the project was meeting requirements and being verified