
Presented by Jim Jamieson

8/13/2012 - JMJ 1

Background
 CMMI® aims to define and mature project processes by

focusing on
 Continuous quality and performance improvements
 Deliver Quality Software

 Agile software development focuses on
 Rapidly delivering high-quality software
 That meets both the needs of the customer and
 The goals of the organization over multiple iterations of the

development lifecycle.
 The difference?

 CMMI® defines what you need to do, agile defines how to
quickly adapt software in a changing environment

8/13/2012 - JMJ 2

CMMI® Model

8/13/2012 - JMJ 3

Agile Techniques
 Whole team involvement
 Continuous customer

feedback
 Pair programming
 Continuous integration
 Automated testing

 Test-driven development
 Refactoring
 User acceptance testing
 Retrospective
 Daily standup meeting
 Frequently release

software

8/13/2012 - JMJ 4

Agile Techniques in the SDLC

8/13/2012 - JMJ 5

Whole Team Involvement
 Benefits

 Better planning estimates
 More detailed requirements
 Gain commitment
 Everyone has the same story for how the system works
 The team decides what it means to be “done”

 Potential Pitfalls
 Increase in communication channels
 Schedule delay

 Relationship to CMMI®
 PMC, IPM, RD, REQM, PI, TS, VER, VAL
 All phases of the SDLC result in increased involvement and

commitment by the team to deliver the product

8/13/2012 - JMJ 6

Continuous Customer Feedback
 Benefits

 Willingness to discuss all project aspects openly
 Quickly adapt application to suit customer’s needs for

increased business value
 Potential Pitfalls

 Key stakeholders may not wish to be involved
 Changing your approach
 Demonstrating commitment

 Relationship to CMMI®
 PMC, IPM, RD, VAL
 By having the customer help to develop requirements they are

better prepared to identify defects in the product

8/13/2012 - JMJ 7

Pair Programming
 Benefits

 Helps developers stay focused and think through things aloud
 Produces higher quality code and reduces defects
 Reduces maintainability
 Greater mentoring and teaching opportunities
 Fosters collective code ownership

 Potential Pitfalls
 Not everyone works well together, should not be forced

 Relationship to CMMI®
 TS, VER, VAL
 Ensures best technical decisions are made and work can easily be

checked to ensure it adheres to standards
 Does not always need to be programming could be “unit testing”

 8/13/2012 - JMJ 8

Continuous Integration
 Benefits

 Can be used to identify defects, integration errors, coding
standard variances, and failed tests earlier in the development
process

 Code is always “ready” for the customer
 Provides continual feedback on the state of the application

 Potential Pitfalls
 If everyone is not on board, then developers may be unwilling

to fix something that is not their responsibility
 Relationship to CMMI®

 CM, PI, VER
 Frequent builds of the application ensure code is built the

right way and all aspects integrated
 Can be used to enforce standards

 8/13/2012 - JMJ 9

Automated Testing
 Benefits

 Catches bugs early, when work is fresh
 Safety net when refactoring
 When integrated as a part of the build process, they can

be run as a part of Continuous Integration
 Potential Pitfalls

 Automated tests say nothing about the quality of the
test

 Relationship to CMMI®
 VAL: Code is continually validated to ensure it is correct

8/13/2012 - JMJ 10

Test-Driven Development
 Benefits

 Automated tests written first that will fail, code is written,
tests run again to ensure code passes

 Forces developer to think about how their code will fail
 Lower defect rate
 Further requirement identification

 Potential Pitfalls
 Can slow down development time
 All developers must agree

 Relationship to CMMI®
 VAL, TS: All solutions support automated tests to ensure the

functionality is correct
 8/13/2012 - JMJ 11

Refactoring
 Benefits

 Small transformations that constantly improve the code
for all developers

 Automated tests can support refactoring
 Code does not degrade over time, easy to understand,

maintain, and change
 Potential Pitfalls

 Perceived lack of business value
 Relationship to CMMI®

 PI/TS: Provides strategy for when to refactor by focusing
on small transformations

8/13/2012 - JMJ 12

User Acceptance Testing
 Benefits

 Customers verify the specification they provided the
developers has been met

 Defects identified and fixed prior to release
 Potential Pitfalls

 Customer schedule can drive when and how often UAT
is performed

 Relationship to CMMI®
 VAL: Customer validates product frequently to ensure

business requirements are met

8/13/2012 - JMJ 13

Retrospective
 Benefits

 Improvements to project processes can continually be
identified

 Understanding where something is essential for
improving quality

 Potential Pitfalls
 Too many suggestions can actually hinder improvement

 Relationship to CMMI®
 PP, PMC: Project is continually monitored to ensure the

plans are met and an identified weakness will then lead
to improvements for the next cycle

8/13/2012 - JMJ 14

Daily Standup Meeting
 Benefits

 Discussion of obstacles leads to resolutions
 Everyone is on the same page with the project status

 Potential Pitfalls
 Potential to become too detailed, must remain concise

 Relationship to CMMI®
 IPM, PMC, RSKM: Project status including risks and

issues faced by the team are discussed daily

8/13/2012 - JMJ 15

Frequently Release Software
 Benefits

 Customer can frequently evaluate changes to ensure they fit
within business requirements

 Identifies hidden business requirements
 Increase business value and stakeholder confidence

 Potential Pitfalls
 Customer rollout process could be long
 Relies on many other techniques discussed previously

 Relationship to CMMI®
 RD, TS, VER, VAL, PMC
 Feeds back into next iteration to identify work to be done

 8/13/2012 - JMJ 16

Agile Impact on Software Development
 Automation as much as possible
 Reduction in schedule and cost
 Issues identified earlier in all processes
 Increased customer satisfaction
 Decrease defects
 Introduces more checkpoints where new customer

requirements can be added – drives business value
 Companies using these techniques have been certified

as high as CMMI® Level 5

8/13/2012 - JMJ 17

Where to Start?
 Start with techniques focused on communication

 Whole team involvement
 Continuous customer feedback
 Retrospective
 Daily standup meeting

 Move to some easy technical techniques
 User acceptance testing
 Frequently release software
 Continuous integration

 Finally add advanced technical techniques
 Pair programming
 Automated testing
 Refactoring
 Test-driven development

 8/13/2012 - JMJ 18

Where to start?
 For existing projects a few recommendations

 Whole team involvement
 As a team identify the story of how the system works to gain

commitment from all stakeholders
 Define “done”

 Continuous integration
 Find ways to take build process and development standards to help team

verify product is built the right way
 Automated testing

 Focused automated tests on difficult business requirements where there
are a number of different scenarios and manual testing would be time
consuming

 Refactoring
 Small/Incremental refactors instead of large “wholesale” changes as

business requirements are added/modified

8/13/2012 - JMJ 19

Summary
 Agile techniques can coexists with CMMI®
 Agile techniques can help reduce time to market while

delivering higher-quality software
 While the techniques do focus on quality and a

reduction in defects they also provide other benefits
 Flexibility to meet customer needs
 Maintainability of code
 Shorter development time
 Continually add business value

8/13/2012 - JMJ 20

Reference:

 Any questions?

 Jamieson, J.M. & Fallah, M.H. (March 2012). Agile

Quality Management Techniques. Software Quality
Professional, Volume 12, Issue 2.

 http://www.cmmilevels.com/

8/13/2012 - JMJ 21

http://www.cmmilevels.com/�

Contact Info
 Name: Jim Jamieson
 Phone: 703-943-9406
 Company: Dynamics Research Corporation
 Email: Jim@JJamieson.com

8/13/2012 - JMJ 22

	Agile Quality Management Techniques�Complementing CMMI®
	Background
	CMMI® Model
	Agile Techniques
	Agile Techniques in the SDLC
	Whole Team Involvement
	Continuous Customer Feedback
	Pair Programming
	Continuous Integration
	Automated Testing
	Test-Driven Development
	Refactoring
	User Acceptance Testing
	Retrospective
	Daily Standup Meeting
	Frequently Release Software
	Agile Impact on Software Development
	Where to Start?
	Where to start?
	Summary
	Reference:�
	Contact Info

