
Reconciling CMMI®-DEV Processes
With Agile Software Development

November 6, 2012

Richard Chipman
VP Chief Systems Engineer
Airborne Systems Integration Operation

Science Applications International Corporation

Slide 2

Agenda

• What is Agile SW Development

• Agile Practitioners’ Perspective

• CMMI® Practitioners’ Perspective

• Mapping Agile to CMMI®-DEV Process Areas

• Estimating Agile SW Development

• Examples

• Conclusions

Slide 3

What is Agile?

• SW development methods based on
iterative & incremental development

• Requirements & solutions evolve through
collaboration within self-organizing, cross-
functional teams

• Time-boxed iterative approach

• Adaptive planning

• Rapid and flexible response to change

 Benefits:
• Increased Productivity (25 - 50%)
• Responsiveness to shifting customer

needs & priorities
• Frequent , concrete “products”

Slide 4

Concept of a SCRUM

• SCRUM is aspecific Agile method -- almost become synonomous with Agile

• Organizes and prioritizes backlog into function sets

• Estimates development time/effort for each

• Selects top "N" to develop in a sprint (rapid, short development cycle)

Product
Backlog

Sprint
Backlog

Sprint
Working

Increment of
SW

Slide 5

Estimation with SCRUM
“Storyboards”

• Prioritize most important required functions on backlog

• Develop a simple “story” for each desired functionality (similar to scenarios
and use cases)

• Each member of development team independently assigns a relative level of
effort to story using the numbers in a Fibonacci series (reflects the
uncertainty associated with larger projects)

• For each story, if estimates are close enough, it is assigned that relative rating

• If estimates are far apart, highest and lowest estimates explain their
rationale, and team votes again

• Iterated until acceptable convergence is reached

• Complete rating for all functions/stories

• This is a rolling list, so number of un-rated is large only at beginning

Slide 6

Selecting Work Set for Sprint

• After all items have been weighted by effort, the effort associated with the
smallest task is determined by “triangulating” to size/effort of similar known
past tasks

– Need to develop a set of reference data for “atomic” functionalities

– Estimate reflects productivity of past projects

• Other tasks are estimated by scaling the effort by the ratio of the task’s
weighting to rating of smallest task (usually =1)

• For next sprint (time box), determine available effort (resource hrs)

• Determine top "N" items that can be done with this effort

• This process can be done at various granularities, e.g. sprints within releases

Slide 7

SCRUM Development Rhythm

• Short daily team-only meetings to state prior and current days' tasks, and to
discussion obstacles and how to remove them

• Team performs design, unit code & test of each distinct SW part needed to
complete each function

• Integration & integrated test take place when required

• Sprint continues until end of pre-defined time box; anything uncompleted
goes back on list as top priority

• Set of functions completed is product of the sprint

• This product can / should be demo'd to customer, but not necessarily
released

• Release schedule is a programmatic decision

Slide 8

Agile Practitioner’s View of Process

Manifesto for Agile Software Development
• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

http://agilemaifesto.org

Observation:

Most SW developers hate processes, avoid documentation like the
plague, don’t like firm requirements and diverge from plan frequently.

The manifesto is almost a religious dogma; however, underlying the
practice of Agile are some sound concepts with which we can agree.

http://agilemaifesto.org/�

Slide 9

Agile Practitioner’s View of Estimation

• Most SW developers hate estimation, because it makes them define
their product early in the life cycle. They prefer to "see how far we
get"; "try some things first"; or "get a release or two done first."

• Part of Agile's appeal to the SW developer is the false belief that agile
is a "best effort" strategy.

• Agile practitioners have invented their own terminolgy for the parts of
the traditional process they dislike -- however, they still do them!
– Use Case Scenario - Story

– SW Productivity – Sprint Velocity

– Requirements – Features

– Function Point Estimation – Story Point Counting

– Work Estimation – “Liar’s Poker”

Slide 10

Principles behind the Agile Manifesto

• Highest priority: satisfy customer by early & continuous delivery of SW

• Welcome changing requirements, even late in development

• Deliver working SW frequently, from a couple of weeks to months

• Working software is the primary measure of progress

• Business people & developers work together daily throughout project

• Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

• Most efficient, effective way to convey information within a team is face-
to-face conversation

Slide 11

Principles behind the Agile Manifesto

• Agile processes promote sustainable development. Should be able to
maintain a constant pace indefinitely.

• Continuous attention to technical excellence & good design enhances
agility.

• Simplicity--the art of maximizing the amount of work not done--is
essential.

• The best architectures, requirements, and designs emerge from self-
organizing teams.

• At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Slide 12

CMMI® Practitioners’ Perspective

• Defined, repeatable processes are essential to predictable, high-quality
results in Software development and other types of projects

• Lack of defined processes is indicative of low productivity and poor
quality

• CMMI is a model from which organizations can define the processes
that work best for them

• Continual review and revision of processes result in improved quality
and productivity

• Collection and analysis of metrics help organizations and projects know
objectively how they are doing, facilitating problem resolution

• Sound estimation based on past productivity metrics and rigorous SW
size estimation

Slide 13

Mapping Agile to CMMI Process Areas

CMMI Process
Area

Agile Methodology

REQM:
Requirements
Management

Although Agile prefers to call them features, user
requirements are a top priority. Agile is flexible about
changes in requirements but if the change impacts
scheduled deliverables, they put the change back into
the backlog, and deliver it in the next sprint

PP: Project Planning Each sprint is planned well; the difference is the
involvement of the entire team in the planning process.
Although the SW developers probably don’t want to be
pinned down, the Scrum master and PM are exacting
about adherence to the plan. Peer pressure helps
enforce the plan within the team.

PMC: Project
Monitoring and
Control

At a formal level, Agile doesn’t report out during a
Sprint. At a practical level, the team reports out to itself
every day. This degree of monitoring is more than in a
traditional process and is very effective. Issues still can
arise at the end of a Sprint that fails to deliver the
planned work.

MA: Measurement

Because the team relies on knowledge and

Slide 14

Mapping Agile to CMMI Process Areas

CMMI Process
Area

Agile Methodology

CM: Configuration
Management

Agile is surprisingly silent about this process area;
however, this is probably because they have no
issue with following sound practices to avoid
chaos. It is safe to say this is a process area that all
endorse and practice.

TS: Technical
Solution

As a process area, TS has always defied
regimentation. Creative teams always seem to
function better without being told how to create.
The agile community at large places great value in
fostering and encouraging creativity within the
team.

OT: Organizational
Training

Training has been an integral part of the Agile
Process since its inception. Most organizations train
entire teams as part of initial implementation, and
continue with periodic updates.

QPM: Quantitative

Reality seems at odds with mythology on this topic.

Slide 15

Mapping Agile to CMMI Practices

• Establish an Organizational Policy
– Adoption of Agile

• Establish a Defined Process
– Agile process is well defined
– Tailor it to the team

• Plan the Process
– Agile stresses iterative planning
– Each Sprint starts with Planning

• Provide the Resources
– Staff the agile team and assign

SCRUM Master
• Assign Responsibility

– Empower team & SCRUM master

• Train People
– Agile Training is part of process

• Manage Configurations
– Same as traditional SW process

• Involve Relevant Stakeholders
– Basic tenet of Agile

• Monitor and Control the Process
– Daily SCRUM & SCRUM Master

provide control
• Objectively Evaluate Adherence

– Sprints end with self evaluation
• Collect Improvement Information

– Agile measures velocity

Slide 16

Estimation in Agile (Story Points)

• What is a Story?
– Brief top-level description of user functional requirement

– Performance and other requirements are considered part of the story,
unless they constitute a cross-cutting top level requirement

– Story is smaller than a use case, larger than a function point type

• What are Story Points?
– Arbitrary scale applied to user stories to define relative size and complexity

of a each story as compared to other stories

– Unit-less, meaning as a scale, they are only valuable to compare against
each other within the same team

– Used in conjunction with knowledge of team’s past velocity as a guide to
planning a sprint

Slide 17

Estimating with Story Points
(Planning Poker)

• Prioritize most important required functions on backlog

• Develop a simple “story” for each desired functionality

• Estimating team should be the development team including SME

• Each member of development team independently assigns a relative
level of effort to each story using the numbers in a Fibonacci series
(1,2,3,5,8,13,…)
– Fibonacci series reflect the uncertainty associated with larger projects

• For each story, if estimates are close enough, it is assigned that
relative rating

• If estimates are far apart, highest and lowest estimates explain their
rationale, and team votes again

• Iterate until acceptable convergence is reached

Slide 18

Estimating Scope of a Sprint

• Determining How Much Fits into a Sprint
– Team’s past velocity measures the number of story points that can be

implemented in a sprint: V= SP/sprint

– After all items on backlog have been assigned a story point count,
determine the top "N" items that can be done during the next sprint

– Helpful to develop a set of reference data for “atomic” functionalities

– Estimate reflects productivity/velocity of past projects; but the team’s
velocity improves as team’s experience with Agile increases

– Hence, velocity should be updated as team accumulates completed sprints

Slide 19

Estimating an Entire Project /
Responding to Requests for Proposal

• Agile does not provide software size or cost estimates
– Velocity and story points are relative measures and team/project specific

– Teams have vastly different interpretations of Agile; hence, productivity is
very much a function of the local practice

– Difficult to build a supportable BOE for costing and proposal purposes

• Nonetheless, DoD and corporate management demand upfront
estimates of SW effort, duration and cost

– Costs and effort, based on known and understood methods and models

– Requires that available data and tools be used to generate an estimate
that is acceptable to customers and management

• What about all of the metrics you've compiled under CMMI?

Slide 20

Traditional Estimation Process

Function
Point

Analysis

Functional
Requirements

Size
In SLOC

Parametric
Estimation

Tool

Productivity in
SLOC/Labor Hour

Historical
Data

Analysis

Constraints
(e.g. Duration)

Effort distributed
over time, task

type and labor type

Slide 21

Estimation Process

Function
Point

Analysis

Functional
Requirements

Size
In SLOC

Parametric
Estimation

Tool

Productivity
in SLOC/Hr

Historical
Data

Analysis

Constraints
(e.g. Duration)

Effort distributed
over time, task

type and labor type

Agile
Practices

Agile Tuning
Factors

Agile
Productivity

Slide 22

Approach to Estimation of Agile SW Development

• Build parametric model in COCOMO, Price-S, SEER-SIM, etc.

• Tune model's factors to match your historical, non-agile, productivity

• Identity factors that Agile will impact

• Adjust those factors incrementally to determine the effects of adoption
of agile over time; i.e. modest improvements at first growing to their
maximum as team becomes fully agile

• Measure productivity of each sprint; accummulate and analyze over
time to update your productivity for use in estimating future work

Slide 23

Example Use Of Historical Data To Tune
COCOMO Model

0

1

2

3

4

5

6

7

8

9

10

0 5000 10000 15000 20000 25000

D
ur

at
io

n
(M

on
th

s)

SLOC

Prior Releases

Nominal

0

20

40

60

80

100

120

100 1000 10000 100000

E
ff

o
rt

 (
L
a
b
o
r

M
o
n
th

s)

SLOC

Prior
Releases

Nominal

Before Tuning

Slide 24

Example Use Of Historical Data To Tune
COCOMO Model

0

20

40

60

80

100

120

100 1000 10000 100000

E
ff

o
rt

 (
L
a
b
o
r

M
o
n
th

s)

SLOC

Prior Releases

Tuned

0

1

2

3

4

5

6

7

8

9

10

0 5000 10000 15000 20000 25000

D
u
ra

ti
o
n
 (

M
o
n
th

s
)

SLOC

Tuned

Prior Releases

AfterTuning

Slide 25

COCOMO Factors for Agile

• Development Flexibility (FLEX)
– Need for software conformance with pre-established requirements
– Adjust to be more flexible

• Platform Volatility (PVOL)
– Sprint is so rapid that platform is very unlikely to change
– Reduce setting

• Personnel Continuity (PCON)
– Sprint is so rapid that personnel are very unlikely to change
– Increase setting

• Multisite Development (SITE)
– Agile practice relies on daily Scrums, staff tend to be collocated
– Increase setting

Slide 26

COCOMO Factors for Agile

• Documentation Match to Life-Cycle Needs (DOCU)
– Agile philosophy is to emphasize product, not documentation
– Reduce setting

• Use of Software Tools (TOOL)
– Agile typically uses strong, mature lifecycle tools, moderately integrated
– Increase setting

• Analyst Capability (ACAP)
– Agile tends to attract high performers and reinforces their productivity
– Increase setting

• Programmer Capability (PCAP)
– Agile tends to attract high performers and reinforces their productivity
– Increase setting

Slide 27

Example of Agile Tuning in COCOMO

Documented reports of
agile organizations
exceeding this level

1.4

3.3

4.7

6.9

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Pr
od

uc
ti

vi
ty

, S
LO

C/
H

r

Predicted Effect of Agile Practices
on SW Productivity

Standard Non-Agile

Low End Agile

Medium Agile

High End Agile

• Actual project attained 2.0
SLOC/hr for Java Code in
their first series of sprints
(i.e. as novices)

• Reached 3.0 by end of first
year

3.0

1.5

Slide 28

Effect of Adoption of Agile over Time

• Experience shows that adoption of Agile does not produce immediate
results; however, the impact is noticeable within the first year.

• The impact appears much greater in year two and levels off thereafter.

0

1

2

3

4

5

6

7

0 1 2 3 4 5

Pr
od

uc
ti

vi
ty

, S
LO

C/
H

ou
r

Years

Full Customer
Buy-In

Constrained
Environment

Slide 29

Concluding Remarks

• Adoption of Agile can lead to improved productivity if used for the right type of
project:
– Continual backlog of work that differs little in type from its predecessors
– Little to no dependence on other evolving SW
– Team continuity assured by project stability

• CMMI practices are still valid, albeit the Agile community has renamed them
• Estimating process for future work is totally different from the week to week

estimation within the Sprint / SCRUM; and follows traditional approaches
– Understanding how to apply standard techniques such as COCOMO, PRICE-S and

SEER-SEM is essential to obtaining accurate estimates
– Experience to date indicates the techniques are completely valid and estimates can

be reliably developed.

Slide 30

Author Contact Information

• Richard Chipman

• (703) 966-4808

• Science Applications International Corporation (SAIC)

• chipmanr@saic.com

	Reconciling CMMI®-DEV Processes With Agile Software Development
	Agenda
	What is Agile?
	Concept of a SCRUM
	Estimation with SCRUM�“Storyboards”
	Selecting Work Set for Sprint
	SCRUM Development Rhythm
	Agile Practitioner’s View of Process
	Agile Practitioner’s View of Estimation
	Principles behind the Agile Manifesto
	Principles behind the Agile Manifesto
	CMMI® Practitioners’ Perspective
	Mapping Agile to CMMI Process Areas
	Mapping Agile to CMMI Process Areas
	Mapping Agile to CMMI Practices
	Estimation in Agile (Story Points)
	Estimating with Story Points�(Planning Poker)
	Estimating Scope of a Sprint
	Estimating an Entire Project / Responding to Requests for Proposal
	Traditional Estimation Process
	Estimation Process
	Approach to Estimation of Agile SW Development
	Example Use Of Historical Data To Tune COCOMO Model
	Example Use Of Historical Data To Tune COCOMO Model
	COCOMO Factors for Agile
	COCOMO Factors for Agile
	Example of Agile Tuning in COCOMO
	Effect of Adoption of Agile over Time
	Concluding Remarks
	Author Contact Information

