The melt-cast XF®11585: a low vulnerability composition Ammunition application from 60 to 155 mm

May 15th, 2012, Las Vegas, NV <u>Christophe Coulouarn</u>, R. Aumasson, P. Lamy-Bracq, S. Cotet, S. Bulot Nexter Munitions

NEXTER Munitions Etablissement de La Chapelle Route de Villeneuve BP 13 18570 La Chapelle Saint Ursin c.coulouarn@nexter-group.fr

Outline

- Explosive Composition XF®11585
 - Context of the study
 - Melt cast process based on TNT
 - Energetic material: XF®11585
 - Pyrotechnic properties
 - Detonics properties
 - Ammunition examples filled with XF®11585
 - Vulnerability performances
 - Ammunition performances
 - Potential IM munitions using XF®11585
 - Conclusion

Context of the study (1/4)

"IM" technology at Nexter Munitions

155 mm LU211 IM artillery shell is the first French IM Field Artillery ammunition under mass production

Researching explosive compositions to extend the Nexter Munitions ammunition offers to 120 mm and below.

Context of the study (2/4)

The next challenges have been followed for developing an explosive composition

Best cost effectiveness

Compatible with a large range of calibers from tank ammunition to mortar bombs

nexter

Compliant with standard filling plant

Context of the study (3/4)

Melt cast process: Strategy developed by Nexter Munitions for 20 years.

Context of the study (4/4)

• "IM" technology is a trade-off between energetic material and ammunition design

nexter

Synergy between these 2 departments :

From low vulnerability ammunition to insensitive ammunition

Explosive melt cast process

nexter

- Description of the melt cast process: TNT based
 - Leadership of Nexter Munitions in this field
 - Conventional & simple process

Reversibility (demilitarisation)

Cooling phase

Gravitational casting phase

Pyrotechnics properties of XF®11585

Main properties

Hazard characterisation

	XF®11585	TNT	Compo B	AENOR standard	STANAG
	50% Go results			A NON Standard	STANAS
Friction sensitivity	0% at 353 N	10% at 353 N	158 N		4489
Electrostatic Discharge	> 736 mJ	> 4,5 J	> 736 mJ	NF T70-539	
Impact Sensitivity	30 % at 50 J	50 % at 25 J	> 50 J		4487

✤ Low sensitivity to basic stimuli

Mechanical properties

Composition Sample	Caliber	Density (g.cm⁻³)	Stress, max (MPa)	Young Modulus (MPa)	Deformation, max (%)	Sample porosity (%)
XF®11585	From 155 to 60 mm	1,73	20,8	1986	1,18	< 0,8
XF®13333	155 mm	1,75	23,1	1853	1,35	< 1,2
Compo B	From 155 to 60 mm	1.70	16,1	1877	0,94	ND

Pyrotechnics properties of XF®11585

Main properties

► Thermal properties: DSC according to the STANAG 4515: 5°C/min

	Compo B	XF®11585	IMX 104
Endothermic peak	80°C	80°C	89°C
Onset / Exothermic peak	202 / 235°C	204 / 230 °C	212 / 224 °C
Activation energy	163 kJ/mol	151 kJ/mol	ND

Detonics performances

Confined detonation velocity and unconfined critical diameter

Detonics properties of XF®11585

- Ignition pressure characterisation
 - Large Scale Gap test: according to the STANAG 4488

	XF®11585		
PMMA barrier	Charge density	Go or No go	
50 mm (P=62 kbar)	1.73 g/cm ³	Go	
60 mm (P=50 kbar)	1.73 g/cm ³	Go	
70 mm (P=41 kbar)	1.73 g/cm ³	No Go	
80 mm (P=33 kbar)	1.73 g/cm ³	No Go	
90 mm (P=26 kbar)	1.73 g/cm ³	No Go	

nexter

Detonics properties

Ignition tests

Ignition with a standard fuze without booster: 4 configurations have been performed

Caliber 76 up to 100 mm configurations 100 mm 120 mm Fuze Ø73 mm H 280 mm

XF®11585 nominal detonation

Steel mark : Ø 60 mm & depth 8 mm

No booster required

Vulnerability performances (1/4)

- Thermal threats: Fast cook off and slow coof off in 2 configurations
 - GEMO mock up: representative of artillery shell

Screwed cover

Shell body 1 cm thickness

Bottom

French Standard NF T 70-500

Slow Heating: SH

Nexter Munitions Vent plug patent

Fast Heating: FH

Fast Heating: FH

Ramp gaz device

Expert Working Group

Vulnerability performances (2/4)

- Mechanical threats: Bullet impact in 2 configurations
 - GEMO mock up: representative of artillery shell

Screwed cover

Shell body 1 cm thickness

Bottom

French Standard NF T 70-500

▶ 120 mm HE

Vulnerability performances (3/4)

Mechanical threats: Shaped Charge Jet and Fragment Impact in 2 configurations

nexter

SCJI CCEV62 – GEMO Mock-up

Shaped Charge \emptyset 62 mm

Work in progress- Trial expected in June 2012. On GEMO mock-up and on 155 mm artillery shell

Vulnerability performances (4/4)

nexter

- Mechanical threats: Sympathetic Reaction
 - Ignition with a standard fuze without additionnal booster: 2 configurations performed

XF®11585 nominal detonation – SR types of reaction

Type IV

Donor witness plate

No Reaction

Christophe Coulouarn, Nexter Munitions – IMEMTS 201

0% -

95% fragment mass recovery was achieved

As the explosive composition XF®13333, this new explosive composition allows us to treat a large range of targets.

Class fragment repartition in %

Fragment impact efficiency 120 mm HE-IM:

Ammunition terminal efficiency

Potential IM munitions using XF®11585

Cost comparison for constitutive raw materials

Cost of raw materials (CRW)

Reminder: XF®11585 is based on NTO/RDX/TNT and Aluminium

nexter

Industrial aspect

New XF®11585 requires the same equipments: mixing, casting and cooling than those used for conventional explosives.

Potential IM munitions using XF®11585

Signature expected with explosive composition XF®11585:

Caption : t for tested and recorded result

Required signature for IM test results according to STANAG 4439

SCO

V

t

FCO

V

FCO	SCO	FI	FI	SR	SCJI
V	V	V	V		=

Artillery shell: 155 mm

FCO	SCO	BI	FI	SR	SCJI
V	V	NR	V	Ш	
	t	t	t		

nexter

Navy ammu	nition 100 mm	
inavy ammu		

FCO	SCO	BI	FI	SR	SCJI
V	V	NR	V	NR	
				t	

Mortar bombs: 76 mm (81 & 60 mm)

Tank ammunition: 120 mm

FΙ

V

SR

IV

t

BI

NR

t

FCO	SCO	BI	FI	SR	SCJI
V	V	NR	V	NR	

Conclusion

nexter

- R&D activities
 - Researching low sensitivity explosive composition to enhance XF® Familly
 - Work on the "IM" design ammunition to be compliant with STANAG 4439
- Intrinsic explosive composition XF®11585 performances
 - Low sensitivity, detonics performances similar to Compo B
 - Raw materials relatively less expensive than EM competitors
- Operational advantages of ammunition filled with XF®11585
 - Cost effectiveness
 - IM & detonics performances
 - Simple pyrotechnic train (robust design)
 - Simple way of demilitarisation (potential re-use of raw materials)

Standard "IM" explosive XF®11585 dedicated to multipurpose "IM" ammunition

QUESTIONS ?

C. Coulouarn a member of