

U.S. Army Research, Development and Engineering Command

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Neelam Mehta, Dr. Brian D. Roos, Dr. Eric J. Bukowski U.S. Army Research Laboratory brian.d.roos2.civ@mail.mil

17 May 2012

Approved for public release; distribution unlimited.

- Octol is a melt-castable, high explosive mixture consisting of HMX and TNT in different weight proportions
- However, TNT fails the IM tests

Explosive Fill	Bullet Impact	Fragment Impact	Slow Cook-Off	Fast Cook-Off	Sympathetic Detonation	Shape- Charged Jet Impact
TNT	IV	IV	Ш	Ш	F	F

 Develop insensitive formulations with performance equal or better than Octol

- High performance due to high solids loading of HMX
- Replace TNT melt phase with IM compliant DEMN formulations
- Replace part or all of HMX from the composition while maintaining performance levels of Fine Grain Octol (FGO)

- WWII German Army uses EA (EDDN/AN)
 - Supplement TNT supplies
 - Aerial bombs, artillery shells and mortar rounds
- Late 1970s Army and AF investigate use of EAK as IM fill
 - Higher analog nitrate salts used with AN
- 2000 OSD Directs Services to incorporate IM fills into munitions
 - Army/AF develops melt cast IM fill 155 mm artillery projectile
 - AF initiates IM program for GP bombs

DEMN-III J (IMX-103)

- Characterized for performance (D_v, Gurney energy, initiability, fragmentation) & sensitivity
- PM-CAS downselected DEMN-III J as backup candidate for M795 transition
- Significant IM gains demonstrated in M795 155 mm projectile successful
 - Passes 4 of 6 Tests
 - First formulation to pass sympathetic detonation in 155 mm M795 artillery projectile <u>WITHOUT</u> a barrier!
- Pilot Plant Loading at ARDEC (4/4 acceptable projectiles with minimal engineering controls)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Passing responses

- Fragment impact Type V burn
- Sympathetic detonation non-detonative passing response
- Shaped charge jet impact- non-detonative passing response

Bullet Impact

First Comp B type fill to pass SCJI

- Type IV w/ 0.50-cal bullet (fuze >50 feet)
- Still significant improvement over Comp B

Slow Cookoff

- Type III Response
- Need to address currently insufficient venting design
- Fast cookoff TBD

Munition Based Accomplishments

DEMN-based TNT Replacement for M795 Projectile

Explosive Fill	BI	FI	SCO	FCO	SD	SCJI
TNT	IV	IV	Ш	Ш	F	F
DEMN-III J (-IX F)	(IV)	(V)	(V)	(V)	(P) ¹	(P)*

DEMN-based Comp B Replacement for 120mm mortar

Explosive Fill	BI	FI	SCO	FCO	SD	SCJI
Comp B	-			II	F	F
DEMN-IX H	(IV)	(V)	(111)	TBD	(P)	(P) ²

- * For modified formulation, DEMN-IX F
- ¹ First formulation to pass SD without mitigating barrier
- ² First Comp B type formulation to pass SCJI

RDECOM Performance Estimates

Preliminary Calculations: Cheetah v5.0

		Baseline Fo	rmulations	
Performance Metric	Fine Grain Octol (FGO) (65/35) HMX/TNT	2106-B	2107-A	2107-B
Detonation				
Pressure				
(Fraction of FGO)	1.00	0.89	0.81	0.84
Detonation				
Velocity				
(Fraction of FGO)	1.00	0.99	0.98	0.98

• DEMN Analog of Octol:

- Replaced TNT with less sensitive DEMN melt phase
- Varied the HMX and other HE content
- Estimated detonation velocity in range of Octol
- Estimated detonation pressure slightly lower than Octol

- Three formulations underwent full testing procedures
- Formulations were optimized to maximize solids loadings
- The formulations consisted of DEMN with various HMX content in addition to other particulate HE and wax

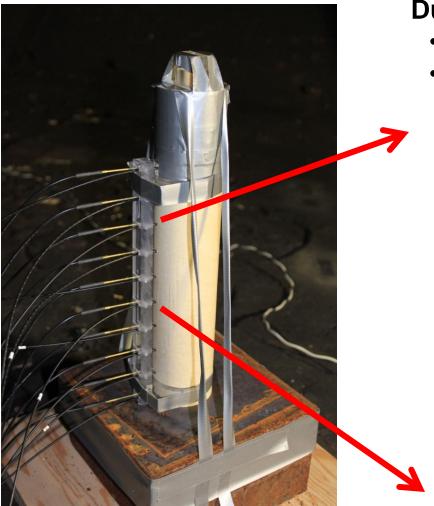
Small samples were prepared in a laboratory scale melt kettle to ensure processability. Samples underwent compatibility and safety testing

All three proposed Octol replacement formulations underwent small scale physical and thermal testing procedures.

	Tests Required for Safe Scale-Up to 1 gal						
Formulation Analogs	Ingredient Compatibility	Impact, Friction, and ESD Sensitivity	Vacuum Thermal Stability	Processing Safety Margin			
ARLX-2106-B	Pass	Pass	Pass	Pass			
ARLX-2107-A	Pass	Pass	Pass	Pass			
ARLX-2107-B	Pass	Pass	Pass	Pass			

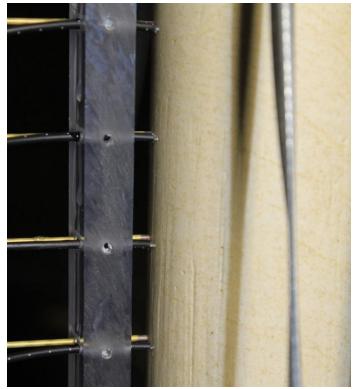
- The impact, friction and electrostatic sensitivity were all comparable or superior to Octol.
- Safe for handling, storage, scaleup

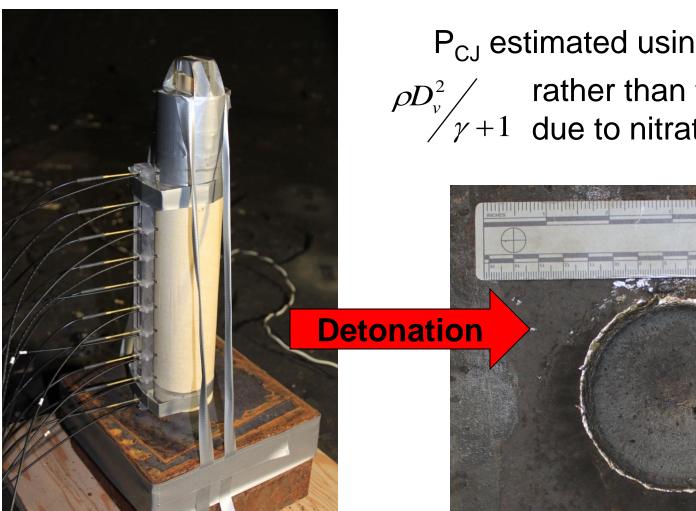
Shock Sensitivity Data


• Large Scale Gap Test (LSGT) Data

NOL Shock Sensitivity			
Formulation	Pressure		
	(Fraction of FGO)		
FGO (65/35)	1.00		
Octol (70/30)	> 0.70 and < 1.00		
Octol (75/25)	0.70		
ARLX-2106-B	1.67		
2107-A (not at full performance)	2.48		
2107-В	2.17		

- ARLX-2106-B ~40% improvement over FGO
- ARLX-2107 A/B greater than 54% improvement over FGO




Dual measurement techniques

- Piezoelectric pins
- Fiberoptic cables

P_{CJ} estimated using:

 $\rho D_v^2 / \gamma + 1$ rather than the dent depth due to nitrate salts loading

 Detonation velocity of all three formulation is similar in performance to FGO

	> 1 inch Unconfined				
2106-В	D _V	P _{CJ}			
	(Fraction of FGO)	(Fraction of FGO)			
FGO	1.000	1.000			
2106-В	1.020	0.986			
2107-A	0.966	0.882			
2107-В	0.983	0.897			

 $\rho D_v^2 / \gamma + 1$

Detonation pressure of all three formulation is lower than FGO.

- Shock sensitivity of all the proposed formulation exceeds the FGO baseline performance.
- All three formulation have larger critical diameters than the standard Octols
- Detonation velocities were comparable to Octol
- Detonation pressures were lower than or similar to Octol

RDECOM Acknowledgements

Energetic Processing

- Roy Maulbetsch, Dawnn Megonnell, Terry Piatt, Lori Pridgeon
- Kevin Bare, Chris Inmon, Ian Cochran, Chris Miller

Detonation Science Team

- Debbie Pilarski, Richard Benjamin, Gene Summers
- Ronnie Thompson, Will Sickels, Ray Sparks

Funding

- ARL Mission Funds
- Office of the Secretary of Defense's Joint IM Technical Program (OSD JIMTP)