

2012 Insensitive Munitions & Energetic Materials Technology Symposium

The IM Ship: Design Considerations to Mitigate Munition Hazards

Dr. Kerry Clark Navy IM & HC Office NAVSEA, NOSSA

Thomas E. Swierk IM Technology & System-level Integration NAVSEA, NSWC Dahlgren

> Roger Swanson AC Program Manager

May 14-17, 2012 Las Vegas, Nevada

Presentation Outline

IM Technology Integration —> the IM Ship

- Introduction
- System-of-systems approach
- The "IM Ship"
- High Risk Ship Hazards
- Examples of IM Mitigation techniques for an IM Ship
- M&S as a design tool
- M&S Examples for Shipboard Hazard Analysis
- Summary & Final Thoughts

- ... from a Navy perspective,
- Historically, IM events resulted in a new paradigm for the Navy. They changed the weapon development process and reinforced system safety emphasis. Several initiatives followed:
 - > Make weapons safer with less sensitive energetic materials.
 - > Improve weapon logistic procedures for handling & stowage.
 - Incorporate improvements to shipboard equipment to decrease hazard event vulnerability.

Ship Survivability during unplanned events such as accidents or hostile activity was the underlying objective the Navy's IM initiative.

Afloat with No Operational Capability

IM Technology Integration —> the IM Ship

USS Belknap Fire Damage

New insensitive energetic molocules

Explosive & propellant formulations

Warheads, Rocket Motors, Prop Charges,

Fuzes, Igniters, & initiation systems

Logistic containers (components & AUR)

Launchers & canisters

Weapon magazines

(shielding, thermal sensors, fire suppression)

Platform survivability

The "IM Ship"

Navy vision for platform IM-ness:

Incorporate changes to ship systems & ship design philosophy to reduce risks and limit exposure to IM hazards & threats.

IM Ship = IM weapons + System Safety "best practices" + Improved hazard mitigation techniques

- > Sensors & sprinklers systems for thermal hazards
- > Lightweight shielding materials for ballistic threats
- > Improved logistic procedures for weapon placement and stowage
- Handling equipment and procedures to maximize safety

System-level Integration of IM Technology —> the IM Ship

High risk IM & System Safety hazards for ships:

- ➤ <u>Thermal events</u>: slow —> intermediate —> fast heating.
- High shock & ballistic events: bullets, fragments, SC jets
- Sympathetic reaction events (mass detonations)
- Combined hazard effects (cook-off response starts SR event)

Address areas of highest risk to personnel, weapon systems & platform:

➢ Minimize harmful effects of thermal events occurring as a result of accidents or hostile activity.

> Protect/shield weapons during logistic life-cycle, especially handling/transfer/stowage when deployed aboard ship.

Mitigate chain reaction detonation (sympathetic reaction) events.

Current Design

- Limited monitoring of ٠ temperature changes in magazines.
- Localized sprinkler systems & ٠ firefighting equipment.
- **Response time to thermal event** (rapid heat build-up or fire) can vary
- If slow threat response occurs, ۲ then lives, weapon & ship at risk.
- Slower response times make fire ۲ fighting more difficult & hazardous.

Future Design

- **Automated damage-control** system combining sensors, cameras & automated firefighting capabilities.
- **Ensures fastest possible response** time to life & ship threatening events.
- **Decreased collateral damage with** lower risk to ship.
- Quicker automated response minimizes fire fighting hazards & risks.

Ballistic Hazard Mitigation

IM Technology Integration —> the IM Ship

Current Design

- Missile launchers clustered together, in an in-board location, surrounded by ship structure (several bulkheads of varying sizes & spacing).
- Potential collateral damage can be extensive if a ballistic stimulus causes a chain reaction event.
- If a major chain reaction event occurs, then catastrophic outcome likely with loss of lives, weapons & ship.

Future Design

- A series of <u>armored</u>
 <u>compartments for VLS</u>
 located around the periphery of the ship.
- Makes launchers & missiles resistant to battle damage and safely isolating them from other weapon systems & ship's crew.
- Decreased collateral damage with lower risk to ship.

Current Design

- Major caliber gun ammo transferred (pier-to- ship) in open pallets & stored in open racks in below-deck magazine.
- Prop charges transferred & stored separately in a similar manner.
- Projectiles & Prop charges removed & paired manually during gun firing operations.

Future Design

- 155mm ammo components stored, transferred & deployed in <u>heavily fortified pallets</u>.
- Fully automated handling system in shipboard magazine.
- Decreased collateral damage with lower risk to ship.

Raytheon's *Autonomic Fire Suppression System* (AFSS) designed for the Zumwalt Class Destroyer (DDG 1000)

The *Peripheral Vertical Launch System* (PVLS) designed by the Raytheon/BAE team for the Zumwalt Class Destroyer (DDG-1000)

BAE's *all-purpose ammo pallet* for 155mm projectiles and propelling charges designed to accommodate the Zumwalt Class Destroyer (DDG 1000)

- Thermal sensor linkage (ship —> weapon communication)
 - Weapon sensors to magazine sensors ??
- New lightweight armor (ballistic & shock mitigating) for magazines and launchers.
 - Polyeurea + lightweight composites ??
- Shipboard water barriers
 - Fresh water stored in bulkhead compartments as magazine shielding ??

Future platforms & new ship classes must integrate the best available IM technology.

COMMUNICATION

among these communities is of paramount importance!

Modeling & Simulation can be an effective design tool when integrating IM technology during new ship development. A streamlined process could shorten development time, lower costs and improve system safety & platform IM-ness !

Analysis of Ballistic Hazards (M&S tool application)

IM Technology Integration —> the IM Ship

How —> Use M&S tools to evaluate/screen materials for ballistic protection (magazine bulkheads, weapon shields, ammo dunnage, etc.)

Pumice Penetration Simulation for (a) .30-caliber, (b) .50-caliber Projectile, and (c) Simulation Predicted Exit Velocity Comparisons with Test Data

Analysis of Thermal Events (M&S tool application)

IM Technology Integration —> the IM Ship

How —> Use M&S tools for detailed analysis for complex thermal events occurring in a missile launcher.

Predicted Missile Surface Temperatures after 1 hour in Thermal Environment Resulting From Fire in Adjacent Compartment.

Analysis of Combined Ballistic/Thermal Events (M&S tool application)

IM Technology Integration —> the IM Ship

<u>Scenario</u>: Fragments or SCJ penetrate hull & weapons. Fires start & create risk for violent reactions to spread with potential for SR event.

Physics-based tools can simulate complex hazard events & evaluate risks to ship

We're heading in the right direction. Diverse groups (IM, weapon developers, logisticians, ship designers) are working together to integrate technology.

> Platform survivability will improve. The System-of-systems approach is working for the Navy.

> IM is a system-level process requiring a holistic solution for each ship class.

> <u>Apply lessons learned</u>, especially to logistic procedures for weapon stowage & handling throughout weapon life cycles.

> Do more mixed-store analyses for SR and/or thermal events in magazines and launchers.

System-of-systems approach applies to all services, all types of weapon platforms, including aircraft & land vehicles.

The IM Ship — the wrong approach to Insensitive Munitions

Recipe for IM (circa 1628 AD)

- > Build ship in haste to meet demands of the King.
- > Add more firepower than any ship of her era, 64 cannons in all.
- > Mount cannons on 1st deck and high on 2nd deck
- > Add length to accommodate additional armament at the King's behest.
- > Beam dimension, why worry! Ballast below, no worries!
- > Set sail on maiden voyage, catch wind to fill the sails!
- > Heel to port, take in seawater in lower gun ports & keep filling for gradual descent.
- > Guns & gunpowder safely submerged at 105 feet at harbor's bottom.
- > All munitions are now INSENSITIVE.
- > No future naval battles to survive but inglorious history endures!