œ

Formulation and characterizations of nanoenergetic compositions

<u>A. Beaucamp</u>, A. Wuillaume, M. Rocquin, FA. Alphonse-Gaïl

Financially supported by

CEA-Le Ripault-

Energetic materials and chemistry

<u>Energetic material:</u> mixture between an oxidizer and a reductant (molecule or composition). The decomposition reaction can be written as follow

Energetic molecule: unimolecular reaction

Energetic materials and chemistry

- <u>Energetic macrocomposition</u>: mixture of powders

Oxidizer powder (O) + reductant powder (R)

	RRROOO
=	RRROOO
	OOORRR
	OOORRR

Oxidizer and reductant atoms are distant to one another and the decomposition reaction kinetic may be too slow

<u>Energetic nanocomposition</u>: mixture of particles

<u>Advantages</u>:

- homogeneity of the composition (sensitivity and performances)

• high contact area between O and R (performances)

- kinetic of decomposition reaction comparable to unimolecular decomposition reaction

- no problem of synthetic feasability

- versatility of the composition (oxygen balance adjustment depending on the application)

Prepared and tested materials

- ✓ Synthesis and formulation
- ✓ <u>Physical characterizations</u>
- ✓ <u>Energetic results</u>

Conclusion and Prospects

 \checkmark BET analysis of PF and (P/NP7/3)F aerogels (supercritical CO₂ drying)

Sample	Specific area (m²/g)
PF	795 ± 40
(P/NP7/3)F	688 ± 40

((P/NP7/3)F gel) : Pore size distribution

<u>Impregnation of an organogel with AP or RDX :</u>

Physical characterizations of prepared materials

X Ray powder Diffraction :

œ

80 wt%. AP charge (BO _{cO2} = 0 %)	Average size of AP particles
PF/AP xerogel	> 120 nm (calculus : 480 nm) (repeatability : OK)
PF/AP cryogel	150 nm

<u> Imaging :</u>

Good microscopic homogeneity for xerogels and cryogels (SEM)

> Exocrystallization for xerogels

Before drying

Example : xerogel balls

After normal drying :

> White AP exocrystallites

Partial destruction of the matrix

Energetic characterizations : RDX as a charge

Instrumented drop-weight apparatus :

RDX charge

OB_{CO2} ~ -50 %

~ 70 to 75 wt%.

	Impact H ₅₀ (mm)/ P _{MAX} (bars)	
	Macro	Nano xerogel
RDX	100-150 / 5	/
PF/RDX	140 / 3,92	137 / 1,92 <mark>(- 51%)</mark>
P/NP(7/3)F/RDX	79 / 3,16	130 / 1,48 <mark>(- 53 %)</mark>
P/NP(3/7)F/RDX	95 / 3,63	/

Nanodispersions are slightly less sensitive and less powerful than mixture of powders

- ✓ Mixture of powders (macrosized) : matrix acts as a scraper
- ✓ Nanodispersions : matrix protects RDX towards aggression
- ✓ dispersion/dilution of RDX

Future work : increase the wt%. of RDX beyond 90 % → nanostructured and powerful intrinsic explosive

Difficulties with the xerogel way because probable destruction of the matrix during drying phase

Energetic characterizations : AP as a charge

Instrumented drop-weight apparatus :

AP charge :

OB = -0%				
$\sim 80 \text{w}^{+}\%$	Impact H ₅₀ (mm) / P _{MAX} (bars)			
000170.	Macro	Nano xerogel	Nano cryogel	
PA	~ 500 / 0,75	/	/	
PF/PA	350 / 1,48	367 / 1,92 <mark>(+30%)</mark>	503 / 3,03 <mark>(+104%)</mark>	
P/NP(7/3)F/PA	231 / 1,06	580 / 2,47 <mark>(+133%)</mark>	500-700/2 to 3,3 (+100 to 200%)	
P/NP(3/7)F/PA	189 / 1,60	203 / 1,64 <mark>(+2%)</mark>	257 / 2,41 <mark>(+50%)</mark>	

nanodispersions are less sensitive and more powerful than mixture of powders

- \checkmark Same mechanical influence of the matrix than for RDX compositions
- ✓ Better mix between oxydizer and reductant when nanodispersed
- ✓ Cryogel way better than xerogel way

Energetic characterizations on AP cryogels

formulations

Energetic characterizations on AP cryogels

Closed-chamber combustion :

Energetic characterizations on AP cryogels

 Burning rate of the nanosized formulations is about two or three times higher than the one of the mixtures of powders
Nanostructuration guarantees a stable combustion all over the explored pressure range (exponent pressure < 1)

Conclusion

New energetic functionalized organogels have been synthesized and their ability to constrain the charge to nanostructure has been illustrated.

> Nanodispersions tend to be less sensitive than mixture of powders (Impact sensitivity).

> When they decompose, AP based nanomaterials are more powerful than mixture of powders.

> Combustion of nanodispersions shows improved propulsion performances (burning rate and combustion stability) compared to mixture of powders.

➤ A scale-up of the cryogel process has recently been done with success, allowing us to produce batches of 125 g of nanoformulations
→ Use in propellant formulation

œ

> Reproducibility of the cryogel process to nanostructure is demonstrated but improvements must be done to control and/or to tune the microstructure

> Ability of the cryogel process to nanostructure an intrinsic explosive (RDX) with charge ratio > 90 wt%. \rightarrow nanostructured powerful intrinsic explosive.

THANK YOU FOR YOUR ATTENTION

A MEMBER OF

