

Removing Full-Scale Testing Barriers: A Fundamental Detonation Characterization Technique for Novel Energetic Formulations at the Laboratory Scale

2012 Insensitive Munitions & Energetic Materials Technology Symposium May 14-17, 2012 Las Vegas, NV

> Matthew M. Biss U.S. Army Research Laboratory Aberdeen Proving Ground, MD matthew.biss@us.army.mil

Approved for public release; distribution is unlimited

Overview

Background

Early detonation characterization research performed by Goranson¹

- Free-surface velocity measurements of 'flyer plates' positioned adjacent to an energetic charge
- Determined reaction-zone length and CJ pressure
- Holton extended experiment by replacing the flyer plate with an optically transparent material (most commonly water)²
 - Streak image taken parallel to charge axis of sympathetically detonated cylindrical charge submerged in distilled water
 - Water shock wave velocity measured
 - Empirical water shock wave parameters implemented
 - Detonation velocity as a function of density relationship known a priori
 - Detonation pressure calculated using above and hydrodynamic theory

1. Duff, R.; Houston, E. Measurement of the Chapman-Jouguet pressure and reaction zone length in a detonating high explosive. *The Journal of Chemical Physics* **1955**, 23 (7), 1268.

2. Holton, W. The detonation pressures in explosives as measured by transmitted shocks in water; NAVORD Report 3968; Naval Ordnance Laboratory: White Oak, MD, December 1954.

Research objective

Proposed to measure air shock wave velocity *U* at the energetic material—air interface and infer all other state properties using theoretical/empirical foundation

Energetic material detonating in atmospheric air

- Detonation wave transferred into air as shock wave possessing different state property values
- 8 variables needed to define interaction
 - Detonation wave: D, P_{CJ} , u_{CJ} , ρ_{CJ}
 - Air shock wave: U, P, u, ρ

CHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Radial distance, R

Shock wave fully defined by five state variables:

- Velocity U, pressure P, particle velocity u, specific volume, v (or density ρ), and specific internal energy, e
- Specific internal energy eliminated by combining equation of state, *i.e.*, *e* = *f*(*P*, *ρ*), and conservation of energy

Air shock wave

Unknown: P, u, p

Detonation wave

Unknown: *D*, P_{CJ} , u_{CJ} , ρ_{CJ}

Detonation wave equations

RDECON

- Cooper developed reduced form of *P-u* Hugoniot for compilation of energetic materials³
- Data collapsed into a narrow band able to be approximated by two correlations based upon reduced pressure:

For reduced pressures above 0.08:

$$\frac{P}{P_{CJ}} = 2.412 - 1.7315 \left(\frac{u}{u_{CJ}}\right) + 0.3195 \left(\frac{u}{u_{CJ}}\right)^2$$

and for reduced pressures below 0.08:

Energetic P-u Hugoniot

Detonation wave equations

RDEGON

■ Reduced pressure P/P_{CJ} is anticipated to be extremely low due to large shock impedance discrepancy ($\rho_e \approx 1500^* \rho_{air}$)

Energetic material:
$$Z_e = \rho_e D$$
 Air: $Z_{air} = \rho_{air} U$

- Assume detonation velocity *D* and air shock wave velocity *U* are on the same order of magnitude
 - Air shock wave pressure $P < P_{CJ}$, air particle velocity $u > u_{CJ}$
 - P/P_{CJ} anticipated to fall below 0.08 threshold

Particle velocity, u TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Air shock wave

Unknown: P, u, p

Detonation wave

Unknown: *D*, P_{CJ} , u_{CJ} , ρ_{CJ}

Final equations

Detonation density relationship

RDECOM

 Second universal energetic reaction products Hugoniot unavailable

 Cooper developed relationship to relate detonation density to energetic pressing density

Density Relationship

 $ho_{CJ} = 1.386
ho_{e}^{0.96}$

Particle velocity, u TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Air shock wave

Unknown: P, u, p

Detonation wave

Unknown: *D*, P_{CJ} , u_{CJ} , ρ_{CJ}

Experimental methods

- Film-based streak camera captures radial shock wave expansion rate at the energetic material—air interface
 - Beckman & Whitley Model 770
 - 8 mm/µs writing speed
 - 90 cm f/6.3 field lens
 - Spherical 2 g RDX charges
 - RP-3 EBW detonator [29 mg PETN]

Spherical RDX charges

a) Fully assembled 2 g spherical RDX charge

b) Static streak-camera image of the spherical charge in the test plane

c) Dynamic spherical charge detonation streak record

Experimental methods

Streak records digitized using highresolution scanner

- HP 8200 flatbed scanner
- 8-bit grayscale @ 4800 dpi

Digitized records analyzed in MATLAB to track radial shock wave

expansion rate

- Standardized test-bed image used for calibration
- 'Canny' edge-detection filter with threshold
- First 1.2 mm of radial shock wave expansion⁴

Canny filter

Best-fit linear correlation determined for each data set⁴

 $R = Ut + r_0$ R: shock wave radius, *t*: time, r_0 : charge radius, *U*: shock wave velocity

Detonation wave and air shock wave data calculated from measured shock wave velocity and theory

4. Rigdon, J. K.; Akst, I. B. An analysis of the "Aquarium technique" as a precision detonation pressure measurement gage. In *Proceedings of the Fifth Symposium* (*International*) on *Detonation*; U.S. Naval Ordnance Laboratory and the Office of Naval Research: Pasadena, CA, 1970.

Results and discussion

Shock wave radius-versus-time data

Results and discussion

Calculated detonation wave and air shock wave properties for RDX at 1.63g/cm³

Charge	ρ _{air}	U	D	P _{C-1}	ρ _{C-1}	U _{C.I}	Ρ	U
	(g/cm ³)	(mm/µs)	(mm/µs)	(GPa)	(g/cm ³)	(mm/µs)	(MPa)	(mm/µs)
Published	-	-	8.34	28.3	2.16	-	-	-
12040-2	1.207 <i>e</i> -3	8.85	8.40	30.4	2.22	2.22	87.0	8.14
12040-4	1.207 <i>e</i> -3	9.06	8.61	31.9	2.22	2.28	91.2	8.34
12052-1	1.213e ⁻³	9.16	8.71	32.7	2.22	2.31	93.7	8.44
12052-3	1.206 <i>e</i> -3	8.74	8.30	29.7	2.22	2.19	84.8	8.04
Average	1.208 <i>e</i> -3	8.95	8.51	31.2	2.22	2.25	89.2	8.24
St. Dev.	3.202 <i>e</i> ⁻⁶	0.19	0.19	1.4	0	0.05	4	0.18
% Dev.	-	-	1.98	10.2	2.78	-	-	-

Calculated detonation wave and air shock wave properties for RDX at 1.77g/cm³

Charge	ρ _{air}	U	D	P _{C-1}	ρ _{C-1}	u _{C-I}	Ρ	u
	(g/cm ³)	(mm/µs)	(mm/µs)	(GPa)	(g/cm ³)	(mm/µs)	(MPa)	(mm/µs)
Published	-	-	8.69	33.6	2.34	-	-	-
11318-3	1.202 <i>e</i> -3	9.18	8.73	35.3	2.40	2.28	93.3	8.46
11318-4	1.202 <i>e</i> -3	8.96	8.51	33.6	2.40	2.23	88.9	8.25
Average	1.202 <i>e</i> -3	9.07	8.62	34.4	2.40	2.26	91.1	8.36
% Dev.	-	-	0.81	2.53	2.56	-	-	-

Single laboratory-scale experiment provides same information as multiple full-scale tests that require kilograms of material

Theoretically calculated detonation wave properties predicted to within 3%* of published data for two densities of Class V RDX

5/6 properties, 10% deviation for empirically calculated value

RDEGON

Calculated detonation wave and air shock wave properties from previous research

Explosive	ρ	ρ _{air}	U	D	P _{CI}	ρ _{οι}	Р	u
	(g/cm ³)	(g/cm ³)	(mm/µs)	(mm/µs)	(GPa)	(g/cm ³)	(MPa)	(mm/µs)
HMX/Inert	1.781	1.07 <i>e</i> -2	7.42	8.73	33.5	2.34	53.0	6.53
Calculated	-	-	-	8.60	34.5	2.41	53.8	6.79
% Dev.	-	-	-	1.5	3.0	2.9	1.5	4.0
HMX/TNT/Inert	1.776	3.79 <i>e</i> -3	7.84	8.21	31.2	2.40	21.2	7.13
Calculated	-	-	-	8.26	31.7	2.41	21.3	7.18
% Dev.	-	-	-	0.6	1.7	0.4	0.5	0.7
TNT	1.636	0.971 <i>e</i> -3	7.34	6.93	20.7	2.15	47.8	6.71
Calculated	-	-	-	6.80	20.0	2.22	47.8	6.71
% Dev.	-	-	-	1.9	3.4	3.2	0	0
Composition B	1.717	0.947 <i>e</i> -3	8.67	7.98	29.5	2.34	65.5	7.97
Calculated	-	-	-	8.05	29.2	2.33	65.5	7.98
% Dev.	-	-	-	0.9	1.0	0.4	0	0.1

Calculated detonation wave and air shock wave properties from previous research

Explosive	ρ	ρ_{air}	U	D	P _{CI}	ρ _{οι}	Р	u
	(g/cm ³)	(g/cm ³)	(mm/µs)	(mm/µs)	(GPa)	(g/cm ³)	(MPa)	(mm/µs)
Cyclotol	1.752	0.936 <i>e</i> -3	8.64	8.27	31.3	2.38	64.2	7.94
Calculated	-	-	-	8.01	29.5	2.37	64.2	7.95
% Dev.	-	-	-	3.1	5.8	0.4	0	0.1
Octol	1.821	0.943 <i>e</i> -3	8.86	8.49	34.2	2.46	68.1	8.14
Calculated	-	-	-	8.23	32.2	2.46	68.1	8.15
% Dev.	-	-	-	3.1	5.8	0	0	0.1
HBX-1	1.712	1.253 <i>e</i> -3	7.61	7.31	22.0	2.18	67.0	6.97
Calculated	_	-	-	7.22	22.4	2.21	66.5	6.97
% Dev.	-	-	-	1.2	1.8	1.4	0.7	0

Theoretically calculated detonation wave and air shock wave properties predicted to within 3.5% of published data for 32/35 properties from seven historical data sets using single shock wave velocity measurement and atmospheric conditions

Laboratory-scale experimental detonation characterization technique established and verified

 Composed from conservation laws, material Hugoniots, and empirical relationships

• Able to determine detonation wave properties: *D*, P_{CJ} , ρ_{CJ} , and u_{CJ} and shock wave properties: *U*, *P*, ρ , and *u*

- Verified using two densities of RDX (1.63 and 1.77 g/cm³)
 - Predicted 5/6 properties to within 3% of published data
- Reproduced historical data sets for seven energetic materials
 - Predicted 32/35 properties to within 3.5% of published data

Single laboratory-scale experiment provides same information as multiple full-scale tests that require kilograms of material

- Highly-advantageous cost-savings approach for the formulation of novel insensitive energetic materials
- Eliminates initial formulation scale-up requirements necessary for determining detonation performance parameters

Questions?

Matthew M. Biss

U.S. Army Research Laboratory Aberdeen Proving Ground, MD 21005 matthew.biss@us.army.mil