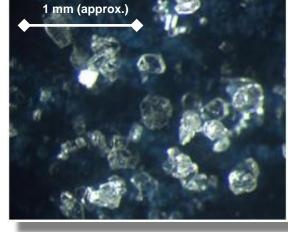


TEX: A rational, next-generation IM explosive component

Dr. Steve Velarde, Gene Johnston, Aaron Bertholf ATK Defense Systems - New River Energetics Radford Army Ammunition Plant (RFAAP)

2012 IM/EM Technology Symposium May 2012

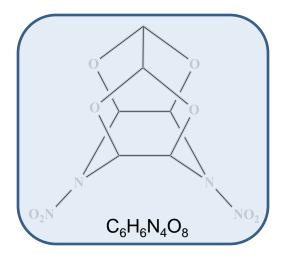
Overview


- TEX: What is it?
- Synthesis & scale-up
 - Production
 - Properties
- TEX: IM explosive ingredient
 - Explosive properties
- Summary

TEX: What is it?

- TEX = 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo- $[5.5.0.0^{5,9}0^{3,11}]$ dodecane
- First reported by Boyer's group¹ in 1990
- High density, caged nitramine
 - 1.99 g/cm³ (X-ray)
 - Structurally similar to CL-20

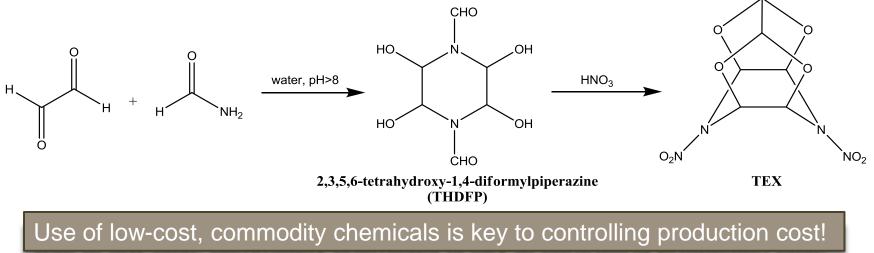
TEX (Naked eye view)



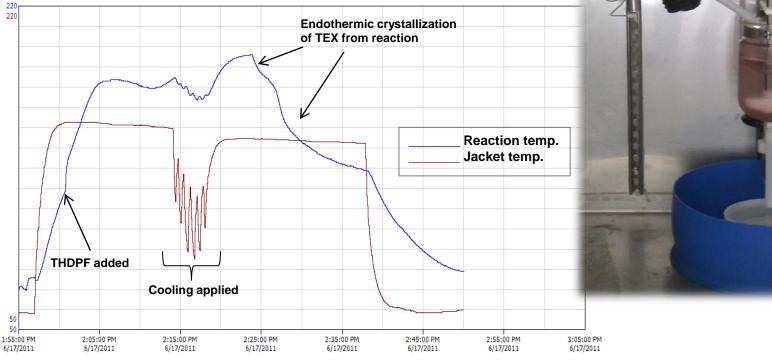
TEX (30X)

TEX (1500X)

1. Ramakrishnan, V.T.; Vedechalam, M.; Boyer, J. H. Heterocycles (1990) 31, 479.

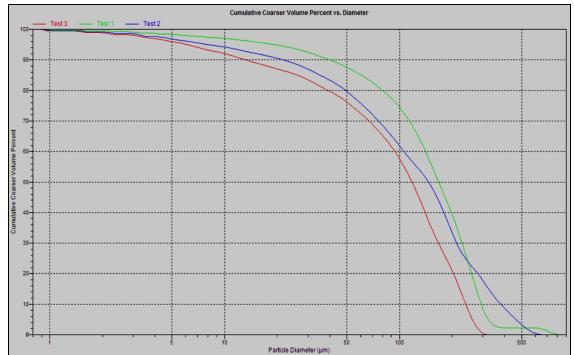


Synthesis & scale-up

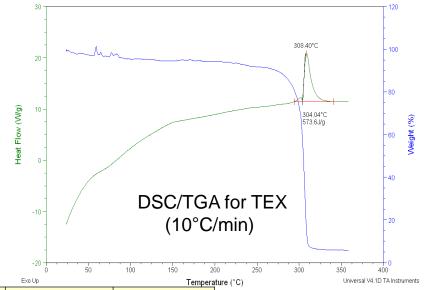

- <u>Simple, scalable</u> two-step process
 - Utilizes commodity starting materials
 - Precursor (THDFP) is non-energetic
 - THDFP produced in high yield
 - Nitration uses only nitric acid
 - No specialized equipment required/no overt hazards encountered
 - Manageable waste streams
 - Non-hazardous

Production

- Pilot runs used 4 liter open-top, jacketed reactor
- Acid pre-heated, THDFP added in a single portion
- Virtually <u>zero</u> downtime between runs (i.e. min. clean-up)
- Reactor yield ~ 0.6 lb/gal



Properties


- Good small scale sensitivity
- Excellent purity (98-99%, HPLC)
 - No recrystallization
- No significant entrained acid
 - Total acidity $\leq 0.2\%$
 - No recrystallization
- Consistent particle size distribution (run-to-run)
 - 118-168 µm (50%)
 - Ability to modify PS in-situ

	Threshol			
Material	ABL impact	ABL impact ABL friction ESD (J)		Decomp.
	(cm)	(lb @ 8 fps)		onset (°C)
TEX	80	490	0.0785	304
RDX	26	170	0.0251	219
CL-20	3.5	100		248
TATB	80	700	0.0251	375
TNT	51	720	1.3	291
NTO	80	1700	0.0783	274

Thermal Properties

- TEX is extremely thermally stable
 - DSC exotherm onset/peak = 304/308°C
 - TGA shows very little residue upon decomp.
- TEX is compatible with most EM & binders
 - 1:1 DSC screening shows no significant ΔT

Neat Materials	Exo onset (°C)	Exo peak (°C)	ΔT onset (°C)	ΔT peak (°C)
TEX	304	308		
ΝΤΟ	274	277		
NQ	250	255		
GuDN (FOX-12)	222	226		
RDX	219	248		
NC	203	214		
NG	187	204		
1:1 Material Mixtures				
TEX:NTO	260	267	-14	-10
TEX:NQ	245	251	-5	-4
TEX:GuDN	220	223	-2	-3
TEX:RDX	222	250	+3	+2
TEX:NC	203	214	0	0
TEX:NG	181	201	-6	-3

- TEX exhibits NTO-like performance with superior IM character
 - ATK Thiokol patent for castable explosives (Lund, et al.)²
 - Polish work on HTPB-based explosives (Vágenknecht, et al.)³

Energetic Solid	Cards	Reaction Type	Measured Detonation Velocity (m/s)
TEX	0	Sustained detonation	6811
TEX	70	No detonation, No deflagration	
NTO	0	Sustained detonation	6263
NTO	70	Sustained detonation	5571
RDX	0	Sustained detonation	7844
RDX	70	Sustained detonation	7790

Table 1. Det. velocity & card gap results of TEX, NTO,and RDX based cast-cure explosives2

Formulations: 70% solids (TEX, NTO, or RDX), isocyanate-cured DEGDN/PGN binder system (PI:Po = 2:1)

 Lund, G.K.; Highsmith, T.K.; Braithwaite, P.C.; Wardle, R.B. "Insensitive High Performance Explosive Compositions, US Patent 5529649, June 25, 1996.
Vágenknect, J.; Mareček, P.; Trzciński, W.A. "Sensitivity and Performance of TEX Explosives," *J. Ener. Mat.* (2002), *20*, 245.

Explosive Properties

- Evaluation of TEX in melt pour explosive formulation
 - 1:1 DSC of TEX:IM melt phase
 - Compatible
 - Small scale sensitivity
 - Reasonable sensitivity even at high solids loading

	Formulation (IM melt phase + crystalline nitramine)							
Test	20% TEX	20% RDX	30% TEX	30% RDX	40% TEX	40% RDX	50% TEX	50% RDX
ABL impact (cm)	64	80	64	64	51	64	51	51
ABL friction (Ib @ 8 fps)	495	395	490	310	540	305	500	295

Explosive Properties

- Critical diameter & card gap testing
 - Melt pour formulation
 - 20 wt% TEX, 80 wt% IM melt phase
 - Formulation processed and poured well
 - 96% TMD
 - Critical diameter between 1" 1.5"
 - Formulation not optimized for particle size
 - No other additives used (i.e. wetting agents or desensitizers)

Recovered 1" pipes (NO GO)

Pieces recovered from 1.5" pipe

- NEGATIVE at 70 cards (3 shot trial)
- POSITIVE (hole in witness plate) at 0 cards
 - Det. velocity = **7200 m/s**

Witness plates (70 cards)

Environmental

- Process waste streams are manageable
 - THDFP: aqueous (**NON-HAZARDOUS**)
 - TEX: spent acid $\xrightarrow{\text{neutralize}}$ no residual energetics (**NON-HAZARDOUS**)
- Aquatic toxicity
 - Initial toxicity screening shows TEX ≈ RDX to fathead minnow (*Pimephales promelas*)
 - Solubility of TEX in water (27 mg/L) \approx RDX in water (33 mg/L)

TEX in Summary

- Well-balanced energetic ingredient
 - Energy-density
 - Sensitivity
 - Affordability/producibility
- Potential applications for IM explosives
 - Cast cure
 - Melt pour
 - Pressed

٠	Plenty	of room	for develo	pment!
---	--------	---------	------------	--------

Material	Density ¹	Performance ²	Reactivity ³	Manufacturability ⁴	Sensitivity ⁵
TEX	1.99 g/cc	High	Low	Simple, low cost	Low
RDX	1.82 g/cc	High	Low	Simple, low cost	High
CL-20	2.04 g/cc	Very high	Low	Moderate, high cost	High
NTO	1.93 g/cc	High	Moderate	Moderate, med. cost	Low
TATB	1.93 g/cc	Medium	Low	Moderate, med. cost	Low
TNT	1.65 g/cc	Medium	Low	Simple, low cost	Low

1) TMD. 2) Based on calculated VOD and C-J pressure. 3) Potential for reaction based on solubility and presence of reactive groups/centers within the molecule. 4) Based on current processes including number of steps, costs of raw ingredients, and assumptions of full scale (> 10Klb/year) production. 5) Small scale sensitivity of neat materials.

Acknowledgements

- U.S. Army (ARDEC): Wendy Balas-Hummers, Sean Swaszek, Dr. Ken Lee
- ATK (Radford): Mike Thornton, Ed Lucas

Questions?

Steve Velarde ATK-New River Energetics 1-540-639-8731 <u>stephen.velarde@atk.com</u>

Aaron Bertholf ATK-New River Energetics 1-540-639-7604 aaron.bertholf@atk.com

