

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

<u>Dr. Thelma G. Manning</u>, Jeffrey Wyckoff, Dr. Eugene Rozumov, Dr. Joseph Laquidara, and Viral Panchal US Army RDECOM ARDEC/Propulsion Research and Development Branch, Picatinny Arsenal, NJ

Christine Knott and Dr. Chris Michienzi, NSWC/Indian Head Division, MD

Gene Johnston, Dr. Benjamin Vaughan, Dr. Steve Velarde, ATK Energetic Systems, Radford Army Ammunition Plant, VA.

2012 Insensitive Munitions & Energetic Materials Technology Symposium Planet Hollywood, Las Vegas, Nevada May 14-17, 2012

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to. US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

Acknowledgement

Technology, Objectives and Goals

Background

- CAN Binder
- CAN Binder with Ground FOX-12
- Characterization
- Recommendations & Conclusions

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

Acknowledgements

UŞ Army RDECOM ARDEC, Picatinny Arsenal Jeffrey Wyckoff Dr Eugene Rozumov Dr. Paul Anderson NSWC-IH/ Dr. Chris Michienzi ATK, Radford AAP **Jim Wedwick Christopher McMurray** Dr Steven Ritchie **Army Aviation and Missile Command, Redstone Arsenal** Dr. Jamie Neidert

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

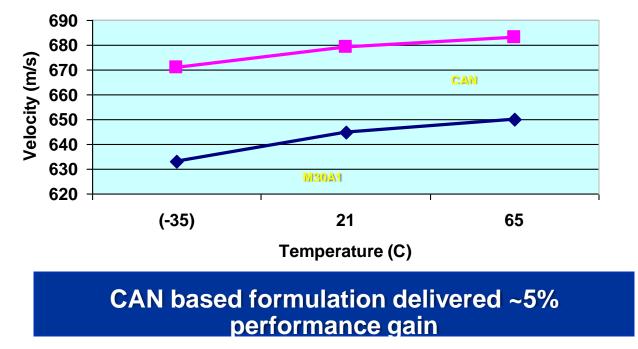
Technology, Objectives & Goals

Technology

RNFAN

A new family of high energy insensitive propellants with Cellulose Acetate Nitrate (CAN) based binder and ground FOX-12 energetic filler.

Objectives


2007 Award

- Improved ballistics across temperature range
- Critical diameter less than 2X ballistic diameter
- 5 lbs pendulum displacement less than 10 cm with RHA 100mm
- > Ignition temperature > 550 $^{\circ}$ C in hot fragment conductive ignition
- Acceptable mechanical properties
- Demonstrate large caliber propellants with improved Insensitive Munitions properties (IM):
 - Slow and Fast Cook-Off, Bullet Impact, Fragment impact and
 Shaped Charge Jet explosion reaction

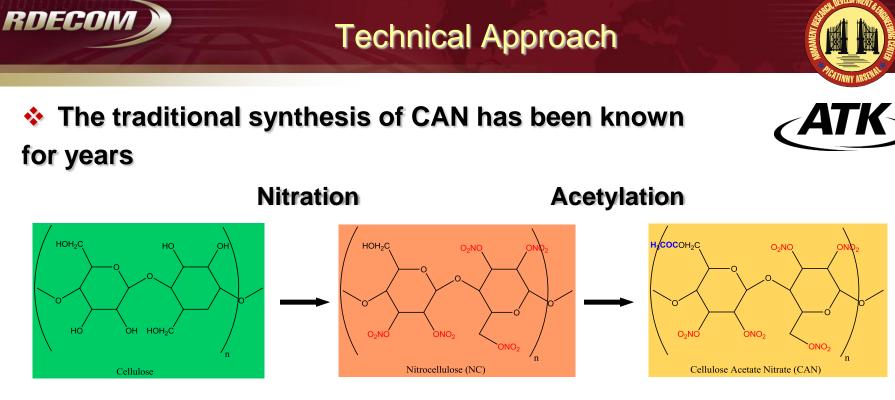
Background

ARDEC and Japan Defense Agency evaluated a series of propellant formulations with CAN binders through a cooperative research

Ballistic Data for Medium Cal

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

Test	Passing Criteria	M30A1	CAN Propellant
FCO	Burn	Pass	Pass
	V	V	V
SCO	Burn	Not	Not
	V	Tested	Tested
BI	Burn	Fail	Better
	V	III-IV / IV	>V, IV, >V
FI	Burn	Fail	Better
	V	III / III-IV	III-IV, III-IV, IV-V
SCJI	No Detonation	Pass	Pass
	V, IV,III	Ш	ш


Improved IM with both BI and FI

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to, US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

8

Cellulose + mixed acid

NC (+ acetic anhydride)

CAN

Challenges with the traditional synthesis

- Use of toluene is environmentally unfriendly
- Several washing steps

AES at RFAAP working to improve traditional route

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

Synthesis at Radford

Scale-up CAN from Radford NC

- Pilot plant effort (100 gallon reactor)
- Characterize process and material

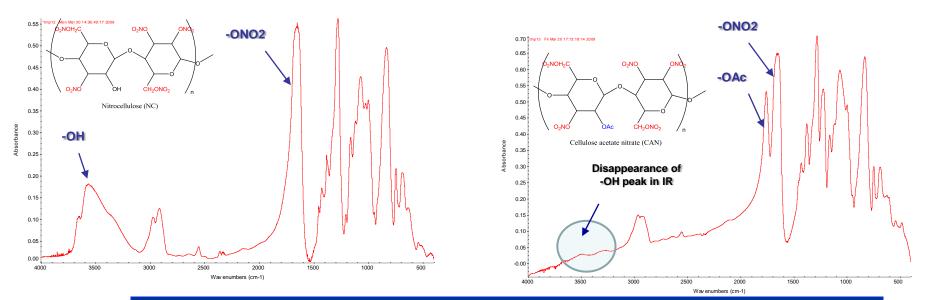
Synthesis of CAN from

cellulose acetate (CA)

- Lab study to test feasibility
- Potential low cost route to CAN

- Fiber acetylated CA used to retain fiber structure
- Eliminate toluene and multiple washing steps

Pilot facility on-line & ideal for CAN scale-up

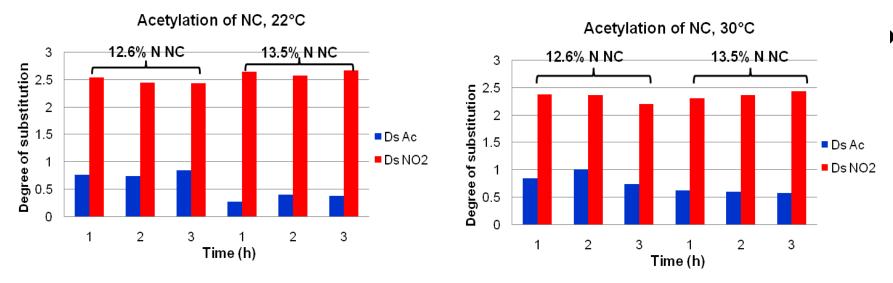

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

ATK CAN Synthesis

- ATK investigated the synthesis of CAN using Radford NC
 - Synthesis completed using both *p*-Toluenesulfonic Acid and Perchloric Acid (HClO₄) catalysts
 - Perchloric Acid provided higher degree of acetylation
 - Higher degree of acetylation may have been a result of denitration

ATK results provide an excellent starting point for further optimization

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to. US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.


TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

.

CAN Lab Optimization

Lab experiments used to establish conditions for pilot scale runs Denitration with extended reaction times & at higher reaction temp. Desired Ds NO2 2.3-2.8; Ds Ac 0.2-0.7;Ds OH 0.2 or less Recommended Ds NO2 + Ds Ac + Ds OH = 3.0 Ds NO2 = 2.2-2.29 =Denitration Ds Acet < 2 get denitration Appearance of -OAc peak (CAN) in FTIR

Excellent correlation between expected and demonstrated acetylation level

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

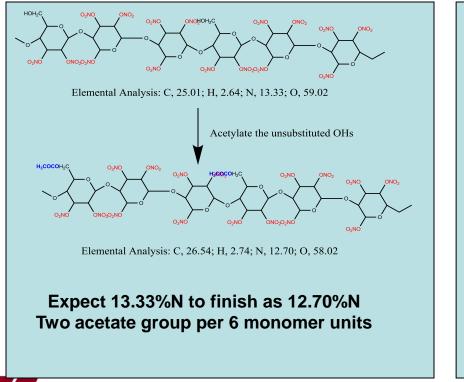
CAN Pilot Scale Results

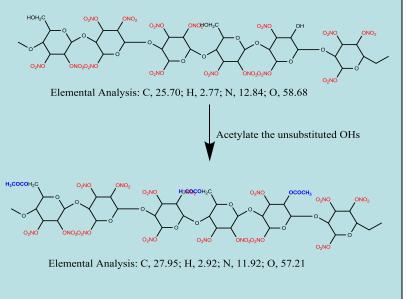
		_				and Kits
Test	Requirement	Lab	Pilot	Pilot	Pilot	
		kg	lot 1	lot 2	lot 3	
		lot				Used lab results for
%N		11.13	11.96	11.81	11.73	scale-up guidance
%Ac		7.96	8.23	8.07	8.47	Blended 12.6%N & 13.5%N NC
Mw	>100,000	N/A	395,33 4	372,34 9	389,18 0	to provide higher Ds NO2 in
Practical	80% fiber between	N/A	81.34%	80.87%	80.31%	final product
Fiber	100 µm and 1 mm					
Length						► 13.2%N NC used as final blend (Ds
Density			4.07			nitrate 2.80)
(g/cm ³)	Versus NC (1.36)	N/A	1.07	1.09	1.15	
Heat of	>11% N NC (734)		733.5	618.1	671.1	 Over 100 lbs of CAN produced
Expl. (cal/g)						in three runs
Heat of	NC11(-756)					 Excellent batch-to-batch product
Formation,	NC12.6 (-708)	-753	-762			Excollent baterrite baterri product
KJ/mole	NC13(-690)		-702			consistency
	NC13.4(-678)					
Solubility	99% minimum	N/A	1.93	1.96	1.48	Testing against preliminary
(ether/acet						requirements (NC based)
one)	0.5	45	45	45	45	
65.5 °C	> 35 min	45+	45+	45+	45+	
heat test		min	min	min	min]

Scalable process using Radford NC

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

National uality


2007 Award

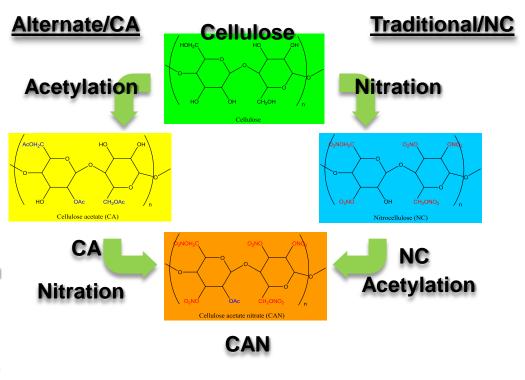

ecipient

Acetylation:

- The number of nitrate ester groups per molecule does not change
- The number of carbons and oxygens and hydrogens per molecule increases Therefore the wt% of N per molecule decreases

Expect 12.84%N to finish as 11.92%N Three acetate groups per 6 monomer units

CA Pathway to CAN


Alternate route to CAN

Start with CA (commodity)

- No toluene in process
- Cellulose acetate from commercial source
- Manufacturing infrastructure in place for both acetylation and nitration

Early results not encouraging

- Use of NC mixed acids leads to high degree of deacetylation & low degree
 - of nitration

Process optimization being explored

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

Small Scale Sensitivity Data of CAN

THRESHOLD INITIATION LEVEL (TIL)¹

				Impact ² Sliding Friction ³			Electrostatic			
Propel	Propellant Temp			Thick Ht.		Vertical Force		Discharge ⁴	Thermal ⁵	
Туре	State	°F	%TV	(mils) ⁵	(cm)	ft-lb	(lb/fps)	(psi)	(joules)	(°C)
	lose Acetate N									
CAN	Dried	70	dried	11-13	17	2.0	142/8	37,270	0.0648	Flame 217.6
	Crushed									
CAN	Ethanol wet	70	69	10	≥120	≥14.4	705/8	106,624		
Cellul	ose Butyrate N	litrate								
CBN	Ethanol wet	70	38.3	26	100	12.2	960/8	129,730		
CBN	dried	70	dried	9-10	64	7.7	395/8	74,178	0.0785	Flame 229.8

1. TIL - Defined as the level above which initiation can occur, as established with twenty consecutive failures obtained at the indicated level and initiation detected at the next higher level. Testing was performed using MGR tool steel test components having 50-70 micro-inch surface finish and a hardness range of 58-62 (Rockwell C). Sample initiation detected by infrared analysis of decomposition gases (CO, CO₂, N₂O, NO).

2. Modified Bureau of Mines test machine - 2 Kilogram falling weight.

3. ABL Sliding Friction Machine.

4. Electrostatic Discharge Test - Modified Bureau of Mines test in which selective capacitors are charged at a constant 5,000 volts and discharged through a variable air gap.

5. Unless otherwise stated, thermal data is derived from the "Fisher johns" melt point analyzer test where a small sample specimen is placed on an anvil and heated slowly until it decomposes.

Table 2: Thermochemical Properties of Proposed **Preliminary Propellant Formulations**

	M31A2	w/ NQ	w/ FOX-12
NC12.6	Х		
CAN11.73		Х	Х
RDX			
FOX-12			Х
Solid Filler	х	Х	
BDNPA/F			
Plasticizer A			
Plasticizer B			
Plasticizer C	х	Х	Х
Akardit II			
Ethyl Centralite	х	Х	Х
Plasticizer F	Х	Х	Х
Flash Suppressant	х	х	Х
Cryolite			
TOTAL	100.00	100.00	100.00
Density (g/cc)	1.6697 00	1.5214	1.5153
Flame Temp (K)	2646.0	2954	3133
Impetus (J/g)	988.99	1083.35	1079.74
Covolume (cc/g)	0.941	0.917	0.903
C _P /C _V (γ)	1.266	1.252	1.235
Energy Density $[I_{\rho}]$	1651	1648	1636
% Re duction in Ιρ	-	0.19%	0.92%
NC/CAN:Plasticizer	1.0238	1.0238	1.0238
Sondailinguids alcohol	3.7619	3.7619	3.7619

	MIC	CROTR	AC - X1	100			Ver:7.01
	Fox 12		Fox 12 2009-9071			11:43 F	Neas #: 205 Pres #: 1
gesen w/1 min usonic			<u>Summary</u> mv = 3.118 mn = 0.136 ma = 1.039 cs = 6.777 sd = 0.904	Percent 10% = 1.755 20% = 2.518 30% = 2.822 40% = 3.059 50% = 3.278	60% = 3.495 70% = 3.726 80% = 4.010 90% = 4.407	3.377 9	01% Width 11% 1.559 9% 0.016
%PASS							%CHAN
100.0							50.0
90.0				1020			45.0
80.0							40.0
70.0 -							35.0
60.0							- 30.0
50.0		1					- 25.0
40.0							20.0
30.0							
20.0							10.0 5.0
10.0							
0.0 + 8	1.000	10.	00	100.	.0		1000
		- Size (n	nicrons) -				

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

2007 Award Recipient

RDECOM

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

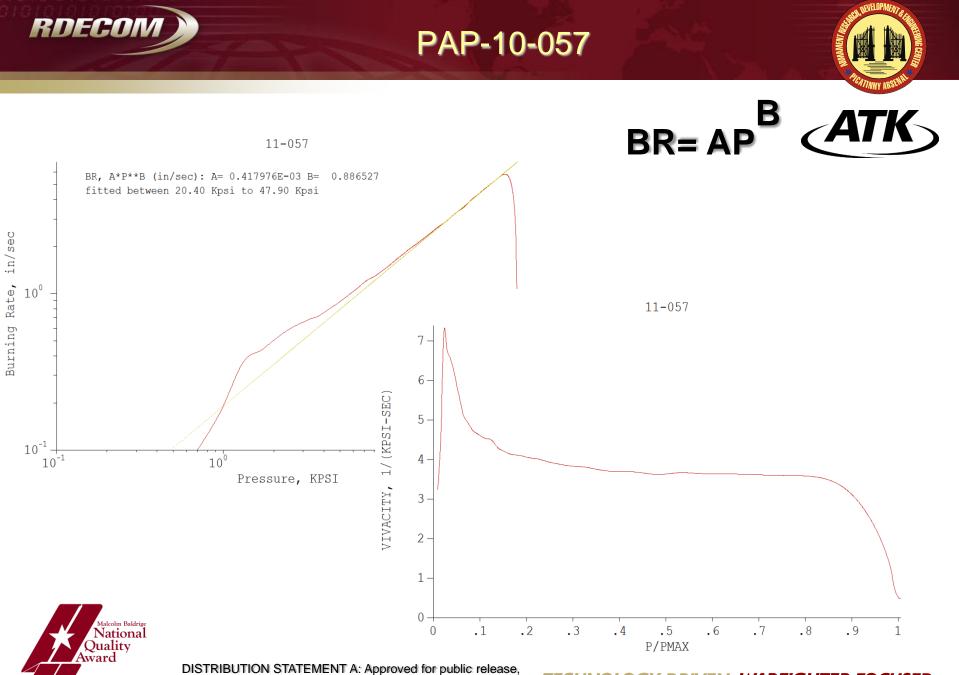
RDECOM ARDEC CAN BASED PROPELLANT FORMULATIONS THERMOCHEMICAL PROPERTIES

				CITANY ANSE
M31A2	PAP 10-029	PAP 11-057	PAP 11-064	PAP 11-065
X				
	Х	X	X	X
	Х			X
	Х			X
X				
	Х		X	
	Х		X	
		X		
				X
X				
	Х	X	X	X
X				
X				
X				
100.00	100.00	100.00	100.00	100.00
1.665054	1.635648	1.612813	1.584865	1.591271
2639.2	3022.3	3116.8	2804	2898.4
984.49	1105.90	1021.65	970.39	1033.29
1.028	1.015	0.943	0.971	0.984
1.263	1.253	1.235	1.249	1.248
1639	1809	1648	1538	1644
	X X X X X X X X X 100.00 1.665054 2639.2 984.49 1.028 1.028 1.263	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 1.635648 1.612813 1.584865 2639.2 3022.3 3116.8 2804 984.49 1105.90 1021.65 970.39 1.028 1.015 0.943 0.971 1.263 1.253

distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

all be referred to IECHINOLOGY DRIVEN. WARFIGHTER FOCUSED.

PAP-10-057 ARDEC


CAN, Plasticizer B , (Acetone/Ethyl Alcohol)

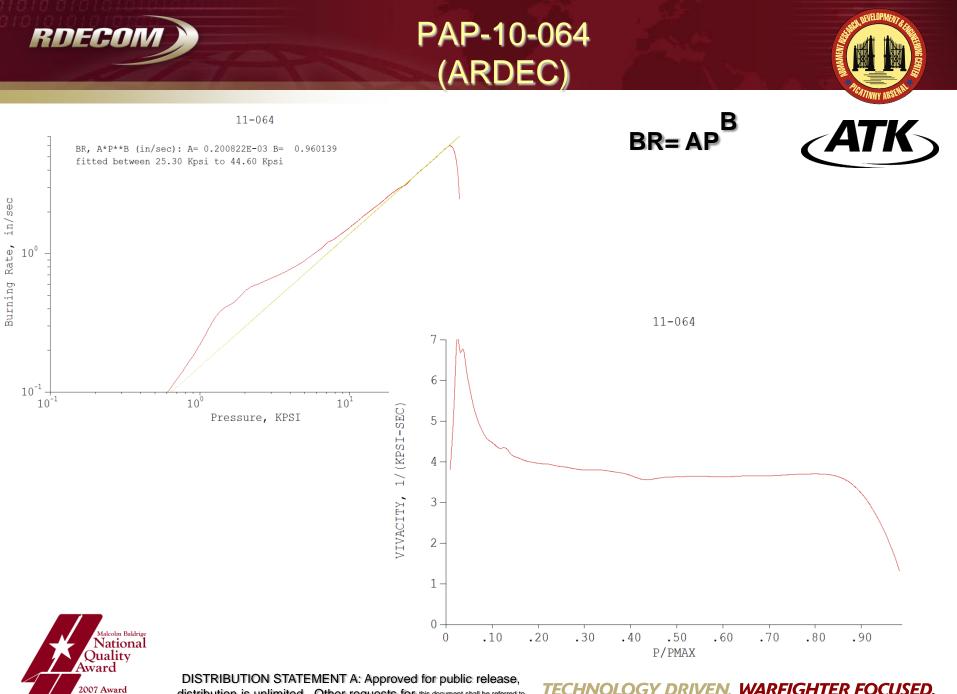
DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

2007 Award

Recipient

PAP-10-064 (ARDEC)


Extrusion (Ram Press)

CAN, PLASTICIZER A, 1PLASTICIZER B, (Acetone/Ethyl Alcohol

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

Recipient

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

20

2007 Award

Recipient

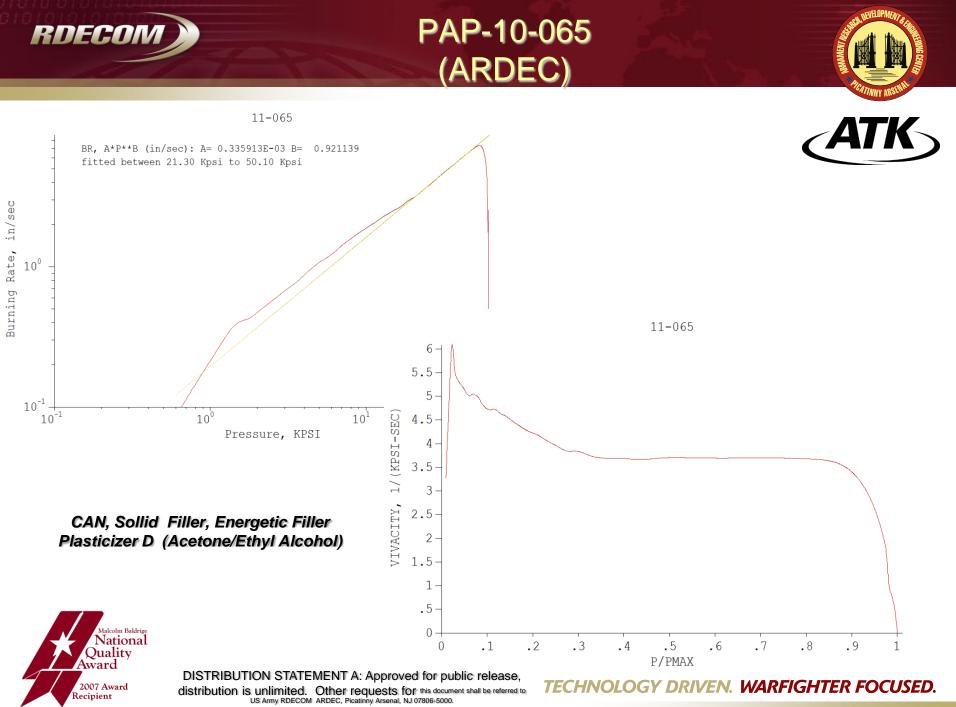
PAP-10-029 (ARDEC)

Mixing (Horizontal Sigma Blade)

Extrusion (Ram Press)

CAN, Solid Filler 1, Energetic Filler, Filler, Accetone/Ethyl Alcohol) DISTRIBUTION STATEMENT A: Approved for public release,

distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.


distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

2007 Award

Recipient

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

22

- ATK
- ➤CAN solvent solubilities different from NC.
- Propellant formulation with ground energetic filler processed well using acetone/ethyl alcohol solvent system
- CAN should be properly wetted with proper grade of alcohol to prevent propellant mixing problems.
- CAN should be dehydrated prior to shipment.

RNFAN

ARDEC demonstrations to concentrate on the following

Gun firing to be leveraged with ARDEC ATO PROGRAM

30 mm (30mm x 173mm) Mk310

Programmable Air-Burst Munition (PABM) 105 mm (M67 and M200) IM testing per MIL-STD-2105C

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

Questions?

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited. Other requests for this document shall be referred to US Army RDECOM ARDEC, Picatinny Arsenal, NJ 07806-5000.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

26