

Towards low-cost TATB-based formulations

<u>A. Wuillaume, E. Pasquinet, E. Grech,</u> <u>A. Beaucamp</u> CEA, DAM, Le Ripault, F-37260 Monts, France

Financially supported by

œ

ie gtomicue - energies alternatives

Context of the study

> TATB is an attractive insensitive explosive:

- it satisfies safety requirements at high temperatures
- it resists to accidental initiation and explosion
- > The current cost of TATB makes it unusable in conventional weapons

- cost of the TATB synthesis

- TATB ratio in formulations, without damaging the energetic characteristics (safety, performances, ...)

Low-cost TATB

✓ evaluation of known methods✓ development of the DCA route

New TATB-based formulations ✓ safety tests

<u>Conclusion and Prospects</u>

œ

pie atomique - energies alternatives

Low-cost TATB - Evaluation of known methods

- > New synthesis: a first evaluation gave poor results
- > Five significant synthetic routes:

Low-cost TATB - Evaluation of known methods

- > New synthesis: a first evaluation gave poor results
- Five significant synthetic routes:

gie atomique - energies alternatives

Low-cost TATB - Evaluation of known methods

- > Improvement on the laboratory scale
 - > Solvent:

œ

cole atomicue - energies alternatives

- ✓ Low conversion: MeOH, THF, CH₃CN
- ✓ Good yield: tetramethylurea, NMP, DMSO

expensive teratogenic

Improvement on the laboratory scale

- Treatment / product isolation:
 - \checkmark DCA precipitates upon dilution with water
 - ✓ Crude product is pure enough (96% by NMR)

✓ Yield = 91% (20g scale)

Development of a GC/MS method: to follow conversion during reaction

atomicus - energies alternative

> Improvement on the laboratory scale

> RM concentration and reaction duration:

œ

evergie atomicue - evergies alternatives

> Improvement on the laboratory scale

- Temperature control (precursors addition order): best control was obtained by addition of TCB_(s) in a suspension of MeONa_(s) in DMSO at 62° C
- > Water volume for DCA precipitation

Water volume	Yield (%)	Purity by GC (%)	
10 x V _{DMSO}	96	95	
5 x V _{DMSO}	97	95	
3 x V _{DMSO}	97	95 —	and
	- OMe ~ 4%		
Productivity and cost improvement			

mergie atomique - energies alternatives

Scale up and summary

atomicus - energies alternatives

- \checkmark Use of a non-carcinogenic solvent
- \checkmark Simple isolation of the product (dilution + filtration)
- \checkmark No further purification
- ✓ High yield and purity (1kg scale)

Validation laboratory-made DCA in TATB synthesis

New TATB-based formulations

> <u>Approach:</u>

everation adaptation - experimental electrone

> Decrease TATB ratio in TATB/HMX/binder formulations

Preserve as much as possible the overall performances (safety, energetic and mechanical properties)

> Influence of binder nature and ratio on impact sensitivity:

- ✓ Apparatus: Pendular fallhammer Sorgues (5kg)
- ✓ Formulations prepared (200g scale):

N°	HMX wt%	TATB wt%	Binder wt%	H ₅₀ (cm)
1	45	49	PKHJ* 6%	52
2	45	52	Cariflex** 3%	54
3	45	45	Cariflex** 10%	61
4	45	52	Technoflon*** 3%	46

* PKHJ: phenoxy binder (d = 1,18)

**Cariflex: copoly(styrene/diene) (d = 0,94)

***Technoflon (fluoropolymer) (d = 1,8)

 Only weak influence of the binder nature and ratio on the impact sensitivity

- Slightly lower sensitivity with 10% Cariflex but energetic performances may be affected at this level (low density)

atomique - energies alternatives

> Influence of HMX ratio on impact sensitivity:

- ✓ Apparatus: Pendular fallhammer Sorgues (5kg)
- ✓ Formulations prepared (wt% binder = 3) (200g scale):

2 compositions were selected for first energetic characterizations:

- HMX/TATB/technoflon 65/30/5
- HMX/TATB/PKHJ 66,3/30,5/3,2

atomicus - energies alternatives

- ✓ (dP/dt)_{max}: if HMX< 65wt% linear relation between HMX_{wt%} and (dP/dt)_{max} if HMX> 65wt% high risk of CoD(D)T
- \checkmark The two formulations have a good combustion behavior

 $\hat{\mathbf{e}}$

œ

New TATB-based formulations - Safety tests

✓ P_{max}: increase of HMX wt% → increase of the burning rate (linear relation)
 ✓ (dP/dt)_{max}: if HMX> 65wt% high risk of DDT

✓ The two formulations studied succeed the friability test

Small-scale gap test:

cie atomicue - energies alternatives

30 to 50 tests (Up-and-down method)
Determination of the barrier thickness (e₅₀)
driving to the sample initiation probability of 50%

Formulation	Reference (45wt% HMX)	F1: HMX/TATB/PKHJ (66,3/30,5/3,2)	F2: HMX/TATB/technoflon (65/30/5)
e ₅₀ (mm)	< 1	1,482	1,880

✓ When HMX wt% increases, initiation is easier (e_{50} higher) ✓ F2 is easier to initiate than F1 → influence of the binder nature

Conclusion and Prospects

> A cost-effective DCA synthesis (TATB precursor following Ott route) was optimized and developped on the kilogram scale. A first estimation of TATB cost reduction was about -30%.

> New TATB/HMX formulations using different kind of binder and up to 65wt% HMX (30wt% TATB) were processed.

> The behavior of the formulations towards impact, combustion, friability and small-scale gap test is acceptable

> Scale-up of nitration (to TNDCA) and amination (to TATB) will be performed as futur work

> 20kg of the two studied formulations will be processed and fully characterized (mechanical properties and energetic performances)

A MEMBER OF

