

GENERAL DYNAMICS Ordnance and Tactical Systems

Prepared by Nausheen Al-Shehab, Ernest L. Baker and Jack Pincay: US ARMY ARDEC David Hunter, Larry Pitts, Jeremy Snyder: GD-OTS Prepared for NDIA Insensitive Munitions & Energetic Materials Technology Symposium May 14-17 Las Vegas, NV

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Reactive Material Formulation Study for Surface Ignition of Explosives

May 2012

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

Outline

- Introduction
- Phase 1 Pellet Only Configuration
- Phase 1 SCO Experimental Test Setup & Results (Pellet Only)
- Phase 1 SCO Experimental Test Setup (Pellets and Explosive)
- Phase 1: Pellet to Explosive Burn Transfer Configuration and Test Results (N-9, PAX-2A and PAX-42)
- Phase 1 Experimental SCO Test Summary
- Phase 1 Conclusion
- Phase 2: A Two Component Pyrotechnic Design- Technical Approach
- Phase 2 Sustainer Output Test Setup and Results
- Phase 2 Ambient Testing Results PBXN-9
- Phase 2 Conclusions
- Future Work

GENERAL DYNAMICS Ordnance and Tactical Systems

- The objective of this presentation is to describe testing used to demonstrate the use of pyrotechnics to force a controlled burn in on the surface of explosive billets
 - Preliminary work presented Al-Shehab, N., E.L. Baker, J. Pincay, "Using Energetic Materials to Control Warhead Ignition During Slow Cook-Off", Insensitive Munitions & Energetic Materials Technology Symposium, Tucson, Arizona 11-14 May 2009
 - Pyrotechnic material required to reliably ignite between 250-300F
 - Material 1 selected from that work the basis for current effort
- During SCO testing at 6-deg F/hr. burning starts in center of billets, typically resulting in a violent reaction
- Controlled burn locations combined with strategically placed vents increase the likelihood of non-violent burning reactions during SCO.

Phase 1 Pellet Only Configuration

Material 1 Pellets

- Four SCO tests conducted with Material 1 to confirm results of prior study
 - Two tests with stack of bare 3 pellets
 - Two tests with 3 pellets in housing to show if confinement affects ignition temperature
 - 1 test with pellets in Ultem 1000 shroud
 - 1 test with pellets in 6061-T6 aluminum shroud
- Tests conducted to verify Material 1 will reliably self-ignite between 250-300 deg F

GENERAL DYNAMICS

Ordnance and Tactical Systems

Phase 1 SCO Experimental Test Setup & Results Pellet Only Configuration

- Tests placed in sealed pipe with two thermocouples used to measure temperature
 - Nanmac A4-53 fast response thermocouple over pellets
 - Type K standard response thermocouple to side of pellets
- Pipe was standard Schedule-40 4" dia. Steel pipe
- Pellets rested on insulation board roughly centered
 - Test 1 3 Bare Pellets \rightarrow Reaction Temp = 294F
 - Test 2 3 Bare Pellets → Reaction Temp = 292F
 - Test 3 3 pellets in Ultern Shroud \rightarrow Reaction Temp = 293F
 - Test 4 3 pellets in Aluminum shroud → Reaction Temp = 300F In all cases Material 1 completely consumed

RDECOM)

Phase 1 SCO Experimental Test Setup Pellets with Explosive Configuration

- Next series of tests (5-14) were to see if Material 1 could start a surface burn in an explosive sample.
- Steel washer placed around each pellet(s) to provide some confinement for the Material 1 pellet
- PBXN-9 Samples place on pedestal made from insulation board

GENERAL DYNAMICS Ordnance and Tactical Systems

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

PHASE 1: PELLET TO EXPLOSIVE BURN TRANSFER CONFIGURATION AND TEST RESULTS -N-9

- For tests 5-8 Material 1 pellets failed to ignite. The N-9 sample cooked off first
 - Test 5 → 3 Pellets on Bare PBXN-9 sample
 - Test 6 → 1 Pellet on Bare PBXN-9 Sample
 - Test 7 → 1 pellet on Bare PBXN-9 Sample with aluminized tape
 - Test 8 → 1 pellet on Bare PBXN-9 sample with 0.10" HDPE
- After several match tests (take match to pellet) it was determined the batch of Material 1 was no longer usable
- Material 1 was proven to be severely hygroscopic and had not sealed properly
- Original batch of Material 1 was discarded and replaced with fresh material

GENERAL DYNAMICS

Ordnance and Tactical Systems

 New material was stored double bagged with desiccant to ensure viability

RDECON PHASE 1: PELLET TO EXPLOSIVE BURN TRANSFER CONFIGURATION AND TEST RESULTS -N-9

- Two additional SCO tests showed that Material 1 could be ignited:
 - − Test 9 3 pellets on PBXN-9 \rightarrow Reaction @ 296F
 - Test 10 3 pellets on PBXN-9 → Reaction @ 286F
 - In Tests 9 & 10, Material 1 reacted, but did not have the heat output to sustain a burn in unconfined PBXN-9

PHASE 1: PELLET TO EXPLOSIVE BURN TRANSFER CONFIGURATION AND TEST RESULTS –PAX-2A and PAX-42

Test 13 → Pellet ignites and consumes PAX-42

Test 14 → Pellet ignites but does not consume PAX-42

• Test 11

RDECOM

- 1 Bare Pellet on Bare PAX-2A→No Reaction
- Test 12
 - 1 Bare Pellet on Bare PAX-2A with aluminized tape → No reaction
- Test 13
 - 1 Bare Pellet on Bare PAX-42→ Reaction at 288F
 - Successful Sequence of reaction. Sustainer material fully consuming PAX-42
- Test 14
 - 1 Bare Pellet on Bare PAX-42 with aluminized tape → Reaction at 289F - PAX-42 sample not consumed

Test #	Pellets	Explosive	Pellet Confinement	Barrier	Reaction Temp (F)	Reaction Description
1	3	None	None	None	294	Pellets burned
2	3	None	None	None	292	Pellets burned
3	3	None	Ultem 1000	None	293	Pellets Burned
4	3	None	6061-T6	None	300	Pellets burned
5	3	PBXN-9	Steel washer	None	-	Pellets failed to ignite
6	1	PBXN-9	Steel washer	None	-	Pellets failed to ignite
7	1	PBXN-9	Steel washer	Aluminized tape	-	Pellets failed to ignite
8	1	PBXN-9	Steel washer	0.1" HDPE	-	Pellets failed to ignite
9	3	PBXN-9	Steel washer	None	286	Pellets burned
10	3	PBXN-9	Steel washer	None	296	Pellets burned
11	1	PAX-2A	Steel washer	None	-	Pellets failed to ignite
12	1	PAX-2A	Steel washer	Aluminized tape	-	Pellets failed to ignite
13	1	PAX-42	Steel washer	None	288	Pellet burned, consuming PAX-42
14	1	PAX-42	Steel washer	Aluminized tape	289	Pellet burned, but PAX-42 did not

GENERAL DYNAMICS Ordnance and Tactical Systems

RDECOM)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Material 1 did not cause sustained burn in multiple explosive formulations
 - Material 1 hydroscopic nature limited storage life, even when sealed with desiccant
- New pyrotechnic formulation needed
 - A commercially available material has not been identified that can meet requirements
 - Material needs to self-initiate between 250-300F
 - Must have flame output that will sustain burn in explosive

RDECOM Phase 2: A Two Component Pyrotechnic Design Technical Approach

- A two-part solution will now be pursued
 - Pyrotechnic Igniter (Material 2A) will start to burn and ignite a sustainer (Material 2B)
 - Sustainer (Material 2B) will ignite explosive
- Material 2A
 - Researching "first fire" pyrotechnic materials that reliably cookoff within necessary temperature ranges
 - Promising materials will be tested later this summer
- Material 2B
 - Thermite formulation selected based on test data from Navy Countermine System Program
 - Material 2B has a flame temperature ~4500F (more than twice Material 1)

RDECOM Phase 2 - Sustainer Output Test Setup & Results

- Tests conducted at ambient temperature (~80F) for viability
- J Tek1 Electric match and FF30 used in place of igniter material
- Electric match sucessfully initiates sustainer Material 2B
- Steel and plastic components used to simulated expected confinement in an actual system

Assembly

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Ofunance and factical systems

Phase 2 - Ambient Testing Results

- Initial testing with N-9 resulted in surface of billet charred, but no initiation transfer observed
 - Previous tests showed Material 1 can ignite PAX-42 with lower flame temperature if assembly temperature is elevated
 - Mat1 Flame Temp = 2100F
 - Mat2B Flame Temp = 4500F
 - Assumption is that Mat2B will easily ignite PAX-42 at elevated temperature
- Test will be repeated with assembly at elevated temperature

- Elevated Temperature Sustainer Output Testing
 - Same Setup as Previously Shown
 - Sustainer Material Heated to 300 $^\circ\,$ F Prior to Initiation
 - Additional HE Formulations: PAX-2A, PAX-3, PAX-30
 - Testing Scheduled for summer 2012
- Identification and Evaluation of Suitable Initiation Material
 - Initiation Temperature Range: 180 300 ° F
- Initiation Cook-off Testing
 - Combined Initiator & Sustainer Materials
 - Without HE: Test for Transfer Between Materials
 - With HE: Test for Transfer to HE

GENERAL DYNAMICS Ordnance and Tactical Systems

BACK-UP

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.