"EDA Joint project on Insensitive Munitions & Ageing (IMA): overview"

2012 IM&EMTS - Las Vegas - Nevada

May 14 - 17, 2012

Caroline NGUYEN

Background

→ Great advances in ammunition development, for the last 20 years

- Safety and Vulnerability are of major concern for ammunition
- IM concept has been developed
- Today IM are "In-Service" Munitions

→ And now...

- IM signature is assessed on <u>pristine</u> ammunition in ambient conditions
- Life duration extension context
- Multiple use, in different operations theatres

What about IM label, during ammunition life cycle?

Background

Ageing aspects versus IM assessment

- → New concern emerging with IM introduction in forces
- Adapted for a European cooperation, within the framework of EDA
 - Common European research topic
 - Complementary approaches :
 - ✓ A great scope of applications, ammunitions
 - ✓ Wider range of methodologies : trials, modelling ...
 - ✓ Large database available

→ IMA (Insensitive munitions and Ageing): one of the first EDA project, under French leadership.

Content

I. IMA project overview

II. Ageing programs and first results

/01/ IMA project overview

Overall objectives

→ Need

- To quantify and predict if ageing can influence ammunition vulnerability
 - ✓ To take into account ageing aspects and their consequences on safety and vulnerability aspects, from the early development steps
 - To have a dedicated and reliable methodology for vulnerability assessment, that would take into account ammunition real life cycle

→ Final goal

 To be able to predict ammunition IM signature, for any ammunition all along its life cycle

IMA project objectives

→ IMA project : a study focused on Energetic Material

- To investigate ageing effects on EM vulnerability characteristics, considering factors such as:
 - vulnerability behaviour (insensitiveness properties changes ...),
 - mechanical properties,
 - chemical properties...
- To study and develop surveillance methods to characterize materials properties with ageing
- And then to offer a first step of an overall methodology able to predict if an IM signature assessed on pristine ammunition can be kept all along its life cycle

Project organization

→ 7 participating nations (MoD & Industries)

Czech Republic : Explosia

Germany : ICT / ISL

Finland: PvTT

France : Herakles (former SNPE)

the Netherlands : TNO

United Kingdom : DSTL

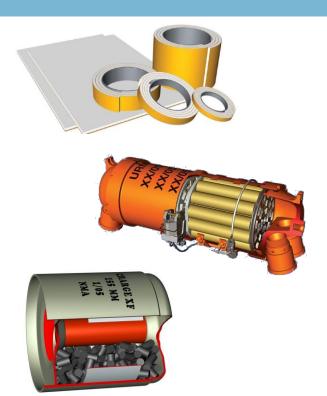
Sweden : FMV

→ 4 technical "Work Packages" (WP), described in a Technical Arrangement

- State-of-Art (WP1)
- Predictive methodologies: identification of major safety / vulnerability parameters and characterization through ageing (WP2)
- Selection of pertinent parameters for surveillance, with dedicated methodologies (WP3)
- Synthesis (WP4)
- → Project total duration : 5 years, started in January 2009

/02/

Ageing programs and first results



Czech technical program

Compositions

Туре	Product name	Composition
High Explosive	Semtex® PI SE	M1RDX/polymere (88/12)
Trigit Explosive	Semtex® PI SE	HMX/polymere (88/12)
Rocket propellant	ROP	NC/NG/CI/DNT
(double base propellant)	ROP1	NC/NG/CI/substitution of DNT
Gun propellant (triple base propellant)	D380	NC/NG/NQ/CI

→ Test matrix definition

- Quantitative analysis HPLC/UV, GC/MS
- Chemical stability tests Test @ 100°C (HT100), Bergman Junk test at 120°C, Methyl violet test
- Sensitivity & stability tests TAM, HFC, VST Vacuum stability test, DSC, DTA
- Mechanical tests Friction sensitivity test, BAM fall-hammer Impact sensitivity test
- Impact & shock sensitivity tests BI test, SCJI test

Czech technical program



→ Ageing conditions

	⇔ 10 years, 25°C For EM without NC		1	ars, 25°C pased EM
Temperature of ageing (°C)	[days of ageing]		[days of ageing]	
80	24		10.6	
89	10.5		3.	83
For NC based propellant	⇔ 5 years	⇔ 10 years	⇔ 15 years	⇔ 20 years
65	32,4	64,9	97,3	129,7

→ First results / comments

No evolution after ageing (80 / 89°C) is observed through BI tests

Bullet impact test @ 12.7mm B-32 API & BZT API-T

Rescue rocket motor

Finnish technical program

Compositions

- Two PBX formulations are included in Finnish IMA work, FOXIT and FPX 7
 - Both sample explosives include the same ingredients but having different sensitivity properties
 - The basic composition of the samples are HTPB / RDX / AP / Al and both are cured with IPDI

Test matrix definition

- Several tests were conducted to find out the effect of ageing
- Testing program included testing of sensitivity, thermal, mechanical properties as well as chemical analysis

Sensitivity / GAP tests	Thermal properties	Mechanical properties	Chemical analysis
EIDS GAP (FOXIT)	Deflagration point	Tensile test (+23 °C & -40 °C)	FTIR (double bonds)
LSGT (FPX 7)	Heat Flow Calorimetry	Dynamical Mechanical Analysis	HPLC (antioxidant)
/	Differential Scanning Calorimetry	/	/

Finnish technical program

Ageing conditions

- Artificial Ageing program is based on Finnish long term storage conditions
 - Ageing is conducted at different temperatures
 - Ageing times at each temperature were selected so that they represent storage for 5, 10 and 15 years
 - Ageing times were calculated according to van't Hoff rule

Corresponding	Ageing Temperature and ageing times in days			S	
storage time (years)	40 °C	50 °C (f = 2,0)	50 °C (f = 2,5)	60 °C	70 °C
5	154	140	62	25	10
10	308	281	123	49	20
15	400	365	160	64	25

→ First results / comments

Test program almost finished, results to be further analyzed

French technical program

Compositions

- 2 PBX : PBXN109 (HTPB / AI / I-RDX) and B2214B (HTPB / NTO / HMX) EURENCO's PBX
- 1 classic HTPB / AP/ Al propellant (reduced smoke)

→ Test matrix definition

- Focus on SH / BI / SR threats
- Parameters to be evaluated through ageing:

Threat	Mechanical	Slow Heating (SH)	Bullet Impact (BI)	Sympathetic Reaction (SR)
Rocket	Uniaxial	DTA	Friction sensitivity	/
propellant	tensile test, DMA	SCO test	Friability (Shot gun), High pressure Combustion	/
PBXN109	Uniaxial	DTA	Friction sensitivity	/
PDANTUS	tensile test, DMA	SCO test	/	/
	Uniaxial	DTA	Friction sensitivity	Micro GAP test
B2214B tensile test, DMA	/	Friability (Shot gun), High pressure Combustion	/	

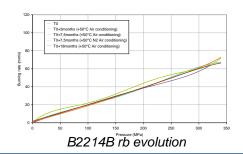
Sensitivity

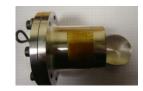
Violence of Reaction

Validation tests on mock up (BI / FI / SCO), on both non aged and aged (equiv. 20 years) EM

French technical program

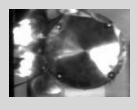
→ Ageing conditions


Position	Ageing T° RH dry		Ageing time (Months)	Corresponding storage time (years)
REFERENCE	T0	0	0	0
Surface		2	24	2
	+20°C	5	60	5
		10	120	10
A:-	+50°C	0,25	3	2
Air		0,625	7,5	5
		1,5	18	12
		2,5	30	20
		3,125	37,5	25
In depth	+20°C	5	60	5
(NE	720 C	10	120	10
Nitrogen		0,625	7,5	5
	+50°C	1,5	18	12
	+30 C	2,5	30	20
		3,125	37,5	25



→ First results / comments

- Hardening of EM is observed, especially on rocket propellant
- No significant evolution on safety / vulnerability tests, after 20 years equiv. ageing
- 2 years @ +20°C ⇔ 3,5 months @ +50°C



SCO test on PBXN109

Rocket propellant mock up

~ 30% of unburned propellant is recovered

Fragment Impact @ 1888 m/s → Type III-IV reaction (Reference test)

German technical program

Compositions

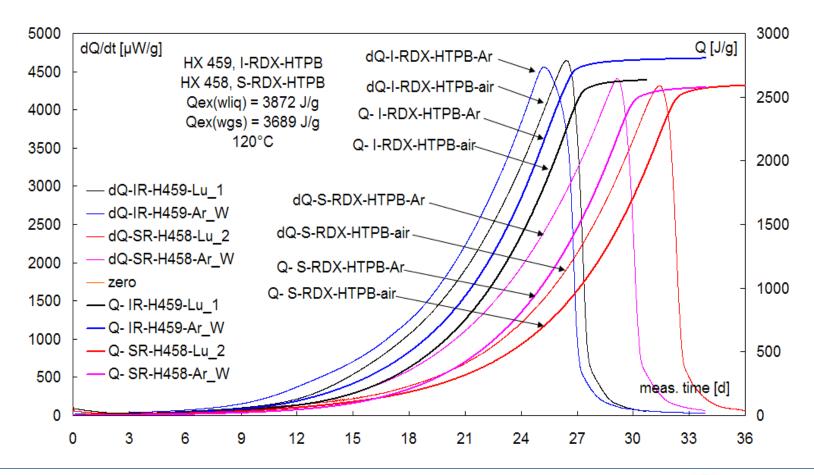
4 compositions of high explosive charges (HEC) are made and investigated by Germany

Used components I-RDX: insensitive RDX from EURENCO S-RDX: standard RDX from Dyno	GAP diol, I-RDX / S-RDX, class 1 and 5 HTPB R45M, I-RDX / S-RDX, class 1 and 5
Composition (high explosive charge, HEC)	GAP-N100 bonded I-RDX / S-RDX 75% RDX (I or S), 15% binder GAP-N100, 10% plasticizer BDNPA_F
Two formulations with I-RDX (class 1 and 5)	
Two formulations with S-RDX (class 1 and 5) - for comparison to I-RDX formulations	HTPB-IPDI bonded I-RDX / S-RDX 80% RDX (I or S), 12% binder HTPB-IPDI (+AO), 8% plasticizer DOA

Test matrix definition

- Basic characterization of energetic components (I-RDX) and HEC:
 Impact and friction sensitivity / Vacuum stability / Auto ignition temperature / Density
- Tests:
 - ARC (Accelerating Rate Calorimetry)
 - DSC (Differential Scanning Calorimetry)
 - HFMC (Heat Flow Micro-Calorimetry)
 - DMA (Dynamic Mechanical Analysis)

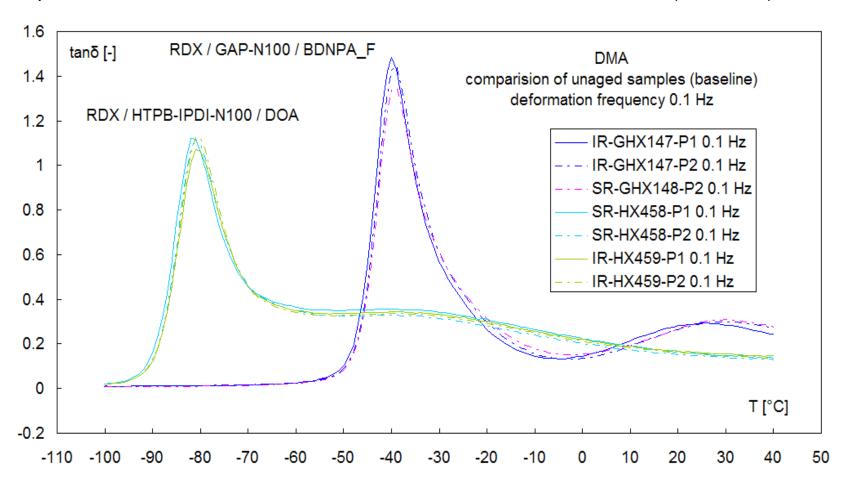
- 21 mm GAP detonation sensitivity
- 30 mm bullet (12.7mm) impact test



German technical program

→ First results / comments

 Microcalorimetry: Heat Generation Rate dQ/dt and Heat Generation Q at 120°C, in air and in argon; comparison of I-RDX-HI and S-RDX-HI formulations

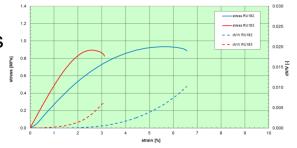


German technical program

→ First results / comments

Comparison of loss factor of I-RDX and S-RDX HI and GN formulations (≠ bonded)

Netherlands technical program



Compositions

 2 Bimodal RDX-HTPB-based explosive (85 wt% solid loading) with NCO-OH ratio of 1.2 and 1.4 (last one is "chemically aged"), first one artificially (high T) aged

Test matrix definition

- IM testing: Fragment impact and Cook-off (0.06°C/s and 0.006°C/s
- Friability testing
- Gas DilatoMetry (GDM tensile strength test with $\Delta V/V$)
- SEM...

→ Ageing conditions

Ageing at 70°C in contact with air inside the oven

→ First results / comments

- Detonation in reference testing of SCB at 0.06°C/s
 → more investigation of the cause of this unexpected event
- In middle of test series and analyses

Swedish technical program

→ Compositions

- 2 LOVA-propellants NL007 and NL008 have been tested.
- 1 propellant lot of NL008 without graphitization has also been analyzed

Component	NL007	NL008
RDX	76.5 %	73 %
CAB (cellulose acetate butyrate)	9 %	12.7 %
NC (nitrocellulose)	7.2 %	5.3 %
TBC (Tributyl citrate, plasticizer)	7 %	8.6 %
Centralite I (NC-stabilizer)	0.4 %	0.4 %

→ Test matrix definition

Analysis method	Property studied
Uniaxial Compressive Testing Density	Mechanical properties
Vented bomb	Grain capacity to withstand high pressure. Burning properties in general.
Slow cook-off DSC	Thermal properties
HPLC	NC-stabilizer content

Swedish technical program

→ Ageing conditions

- Ageing temperatures: 50°C, 65°C and 80°C.
- Storage temperature: 25°C
- Sample collection at 0, 1, 5, 10 and 20 years of forced ageing.
- Thermal cycling

Simulated age = K_T x storage time at elevated temperature \rightarrow

 K_T = Thermal acceleration factor

 T_1 = Storage temperature

 T_2 = Ageing temperature

 E_a = Activation energy

$$K_T = e^{\frac{E_a}{R} \cdot \left(\frac{1}{T_1} - \frac{1}{T_2}\right)}$$

→ First results / comments

- No severe negative impact of ageing / thermal cycling on properties for graphitized propellants.
- Probable splitting of grains at combustion of aged non-graphitized propellants.
- NL007 : ≠ trends in results between ageing @ 50°C and ageing @ 65°C & 80°C.
- Uniaxial compressive testing does not seem to be a suitable test method for studying the ageing behaviour of these propellants due to either propellant composition or geometry.
- Vented bomb analysis seems to be a promising method for propellant surveillance.

UK technical program

→ Compositions

Torpedo warhead PBX (AP/ RDX / AI / HTPB)

→ Test matrix definition

- Tube tests :
 - Fragment impact
 - Fast Heating

→ Ageing conditions

6 months at 80°C (<10% relative humidity)

→ First results / comments

Test program to begin FY 2012-13 for contractual reasons

Conclusions

- → IMA project status, after 3 years of work :
 - 7 European nations are participating to the project
 - Ageing programs are going on, involving different EM, experimental protocols...
 - Numerous data are now been gathered, and need to be further analyzed
- → IMA project :
 - a first step of an methodology → predicting if an IM label is still valid after ageing
- → IMA project : a successful EDA cooperation
- → To be followed...

Acknowledgment

And all participating nations MoDs.

KEY MISSIONS, KEY TECHNOLOGIES, KEY TALENTS

